All Stories
Follow
Subscribe to Fraunhofer Institut für Angewandte Festkörperphysik IAF

Fraunhofer Institut für Angewandte Festkörperphysik IAF

Press release: A breakthrough in cardiac metabolic MR imaging

Press release: A breakthrough in cardiac metabolic MR imaging
  • Photo Info
  • Download

Cardiovascular diseases (CVDs) are the number one cause of death globally: more people die annually from CVDs than from any other cause. To date, despite important advances in diagnostics and therapeutics, several areas of significant unmet needs remain unaddressed. The ability to personalize cardiovascular medical care and improve outcomes will require characterization of the heart, other organs and the characterization of tumors at the molecular level. The MetaboliQs project combines diamond-based quantum sensing and medical imaging, two areas of European excellence, to foster the molecular understanding and personalized care of CVDs.

Magnetic Resonance Imaging (MRI) methods have been used widely in past decades as a safe, non-invasive and non-radioactive method of diagnosing CVDs. However, because of their limited sensitivity, even the most expensive MRI scanners (with the strongest magnets) cannot detect and visualize molecular and metabolic activity in the heart with sufficient sensitivity and specificity. To this end, emerging hyperpolarized MRI techniques play a pivotal role as they allow increasing the sensitivity of MRI by up to five orders of magnitude. Unfortunately, the hyperpolarization process takes a very long time (90-180 minutes per procedure), it is extremely costly and cumbersome (>$2million initial cost, room size equipment) and requires temperatures colder than -270 degrees Celsius. The MetaboliQs project therefore aims to enable a new method for MRI by leveraging new advances in quantum physics.

Precision diagnostics and personalized treatment using quantum physics

The method, termed "Hyperpolarized MRI", will allow imaging and visualization of key metabolic substrates in the heart and other organs (e.g., kidney, liver) via hyperpolarization of nuclear spins of substrates that are natural to the body and non-toxic. In this way, a number of important metabolic reactions can be tracked non-invasively. This breakthrough technology will enable a previously unachievable, highly sensitive quantification of metabolic activity, paving the way for precision diagnostics and better personalized treatment of cardiovascular diseases. For example, it will become possible to distinguish patients who will most likely benefit from invasive or pharmacologic cardiac interventions from those who will need other medical treatment, and to accurately diagnose patients at the disease's early stages.

The MetaboliQs project will leverage the transformative features of diamond nitrogen vacancies (NV), such as high quantum coherence and quantum control, to offer a breakthrough in Cardiac Hyperpolarized MRI: A low cost and high-throughput diamond polarizer that can be used with any MRI scanner and show results within minutes instead of hours required per procedure.

This unique utilization of quantum coherence is made possible by new technology to atomically engineer diamond material (quantum-grade diamond), including 12C isotopic purification, precise control of nitrogen defect concentration and nanofabrication of the diamond surface.

The MetaboliQs consortium, through its combination of leading research institutes and innovative companies, provides the end-to-end expertise required to reach the ambitious objectives of the project and develop breakthrough capabilities in hyperpolarized MRI for cardiovascular applications.

MetaboliQs brings together a world-class multidisciplinary consortium:

1. Fraunhofer Institute for Applied Solid State Physics in Freiburg, Germany, a 
   leading diamond quantum technology research institute and frontrunner in 
   quantum-grade diamond growth and fabrication, 
2. NVision Imaging Technologies GmbH, Germany, Silicon-Valley backed Quantum 
   Tech Company and inventor of diamond-based polarization, 
3. Element Six (UK) Limited, a world leader in research and production of 
   synthetic diamond with a track record in the quantum space,
4. The Hebrew University of Jerusalem (HUJI), Israel, leading diamond quantum 
   technologies research institute,  
5. Bruker BioSpin GmbH - market leader in preclinical MRI and NMR 
   spectroscopy.   and two of the top technical universities in Europe with 
   research groups in hyperpolarized and cardiovascular MRI:   
6. ETH Zurich in Switzerland
7. and the Technical University of Munich, Germany.

The project MetaboliQs is part of the overall initiative "Quantum Flagship", funded by the European Union. This initiative intends on placing Europe at the forefront of the second quantum revolution, which is now unfolding worldwide. It aims to bring disruptive quantum technologies to the scientific arena and to society in general by bringing forward new commercial opportunities addressing global challenges, providing strategic capabilities for security and seeding yet unimagined applications for the future. The Project MetaboliQs started in October 2018 and will continue until the end of 2021.

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 820374.

Dr. Anne-Julie Maurer
Leiterin Marketing und Kommunikation
Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Tullastrasse 72, 79108 Freiburg, Germany
Phone: +49 761 5159-282 
anne-julie.maurer@iaf.fraunhofer.de
www.iaf.fraunhofer.de
Further material to download

image:  Metaboliqs_hyperpolarization_01.png
More stories: Fraunhofer Institut für Angewandte Festkörperphysik IAF
More stories: Fraunhofer Institut für Angewandte Festkörperphysik IAF