Technische Universität München
Deadly duet: Research team uncovers mechanism of action for a class of pore-forming bacterial toxins
TECHNICAL UNIVERSITY OF MUNICH
Corporate Communications Center
Phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de
This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34629/
High resolution images: https://mediatum.ub.tum.de/1441827
NEWS RELEASE
Deadly duet
Research team uncovers mechanism of action for a class of pore-forming bacterial toxins
Pore-forming toxins are common bacterial poisons. They attack organisms by introducing holes in cell membranes. A team of scientists at the Technical University of Munich (TUM) has now unraveled the mechanism of action for one of these toxins. The findings could help combat associated diseases and advance crop protection.
Pore-forming toxins are bacterial poisons that destroy cells by creating holes in the cell membranes. Many bacterial pathogens produce such toxins, including, for example, some strains of the intestinal bacterium Escherichia coli as well as Yersinia enterolitica, a pathogen related to the plague. They attack all kinds of organisms with the help of their toxins - from plants to insects, and even humans.
Scientists all over the world are trying to understand how these toxins produce the fatal openings in cell membranes in hope of one day inhibiting the pathogenic, pore-forming poisons.
After several years of research, an interdisciplinary team from the Technical University of Munich managed to elucidate the mode of action of a toxin subspecies in which two components interact to develop the deadly effect.
Two partners with lethal impact
Combining crystallographic and cryo-electron microscopy methods, Bastian Bräuning and Professor Michael Groll from the Department of Biochemistry, in collaboration with Eva Bertosin and Professor Hendrik Dietz from the Department of Experimental Biophysics, managed to shed light upon the precise molecular structures of the soluble individual components, as well as the pore complex.
"We determined that only one of the two components is able to bind to the membrane. In a second step it recruits the other component and the base domains of two proteins together form the basic pore unit," explains Bastian Bräuning. "This is a new kind of mechanism from which we can obtain much useful insight."
The structure of the resulting hole in the cell membrane resembles a crown, whose teeth comprise 40 subunits of the two interacting partners.
One mechanism - a myriad of potential applications
The team of researchers led by Bräuning and Groll investigated the interaction of the two partner proteins in form of toxins from Yersinia enterolitica and Photorhabdus luminescens. The latter is a symbiotic bacterium in nematodes that attack insects and might prove useful for the development of novel insecticides.
These new insights put the development of substances that inhibit the interaction of two toxin components, and therefore prevent the formation of pores into the realm of the conceivable.
"Our combination of crystallography and cryo-electron microscopy was key to understanding the necessity of the two-component construction of the toxin from a biochemical perspective," explains Professor Michael Groll. "This insight will also help us understand more complex variants in the future, for example those in which three components work together."
Further information:
The work is the result of close a cooperation between the professors of Biochemistry and Biophysics at the Technical University of Munich. Both working groups are part of the Cluster of Excellence Center for Integrated Protein Science Munich (CIPSM). The results were validated by the Department of Pharmaceutical Chemistry and Bioanalytics at the Institute of Pharmacy of the Martin-Luther University Halle-Wittenberg. The X-ray structure data were collected at the synchrotron light source of the Paul Scherrer Institute (Villigen, Switzerland).
Publication:
Bastian Bräuning, Eva Bertosin, Florian Praetorius, Christian Ihling, Alexandra Schatt, Agnes Adler, Klaus Richter, Andrea Sinz, Hendrik Dietz and Michael Groll
Structure and mechanism of the two-component alpha-helical pore-forming toxin YaxAB
Nature Communications, vol. 9, 1806 (2018) - DOI: 10.1038/s41467-018-04139-2
Link: https://www.nature.com/articles/s41467-018-04139-2
Links:
High resolution images: https://mediatum.ub.tum.de/1441827
Website of Prof. Groll's group: http://www.biochemie.ch.tum.de/
Website of Prof. Dietz' group: https://www.dietzlab.org/
Contact:
Prof. Michael Groll
Technical University of Munich
Chair of Biochemistry
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13361 - michael.groll@tum.de
Technical University of Munich (TUM) is one of Europe's leading research universities, with about 550 professors, around 10,000 academic and non-academic staff, and 41,000 students. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, combined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with a campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany. www.tum.de