All Stories
Follow
Subscribe to Technische Universität München

Technische Universität München

Ultimate miniaturization: Switching with molecules

TECHNICAL UNIVERSITY OF MUNICH

Corporate Communications Center

phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de

This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34665/

NEWS RELEASE

Switching with molecules

Molecular switch will facilitate the development of pioneering electro-optical devices

An international research team led by physicists at the Technical University of Munich (TUM) has developed molecules that can be switched between two structurally different states using an applied voltage. Such nanoswitches can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative effort, a team of physicists at the Technical University of Munich has successfully deployed a single molecule as a switching element for light signals.

"Switching with just a single molecule brings future electronics one step closer to the ultimate limit of miniaturization," says nanoscientist Joachim Reichert from the Physics Department of the Technical University of Munich.

Different structure - different optical properties

The team initially developed a method that allowed them to create precise electrical contacts with molecules in strong optical fields and to control them using an applied voltage. At a potential difference of around one volt, the molecule changes its structure: It becomes flat, conductive and scatters light.

This optical behavior, which differs depending on the structure of the molecule, is quite exciting for the researchers because the scattering activity - Raman scattering, in this case - can be both observed and, at the same time, switched on and off via an applied voltage.

Challenging technology

The researchers used molecules synthesized by teams based in Basel and Karlsruhe. The molecules can change their structure in specific ways when they are charged. They are arranged on a metal surface and contacted using the corner of a glass fragment with a very thin metal coating as a tip..

This serves as an electrical contact, light source and light collector, all in one. The researchers used the fragment to direct laser light to the molecule and measure tiny spectroscopic signals that vary with the applied voltage.

Contacting individual molecules electrically is extremely challenging from a technical point of view. The scientists have now successfully combined this procedure with single-molecule spectroscopy, allowing them to observe even the smallest structural changes in molecules with great precision.

Competition for Silicon

One goal of molecular electronics is to develop novel devices that can replace traditional silicon-based components using integrated and directly controllable molecules.

Thanks to its tiny dimensions, this nano-system is suitable for applications in optoelectronics, in which light needs to be switched using variations in electrical potential.

Publication:

Hai Bi, Carlos-Andres Palma, Yuxiang Gong, Peter Hasch, Mark Elbing, Marcel Mayor, Joachim Reichert und Johannes V. Barth,

Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction: J. Am. Chem. Soc. 140, 14, 4835-4840

Link: http://dx.doi.org/10.1021/jacs.7b12818

Further information:

The research project was funded by the German Research Foundation (DFG) for the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) and SPP 1243, as well as the Eropean Union (ERC Advanced Grant MolArt and FET Measure 2D-ink).

Related press release: https://www.tum.de/en/about-tum/news/press-releases/detail/article/30053/

Website of the research group: http://www.e20.ph.tum.de/en/

Contact:

Dr. Joachim Reichert / Prof. Dr. Johannes Barth

Technical University of Munich

Surface and Interface Physics (E20)

Tel.: +49 89 289 12608 - E-Mail: e20office@ph.tum.de

Technical University of Munich (TUM) is one of Europe's leading research
universities, with about 550 professors, around 10,000 academic and non-academic
staff, and 41,000 students. Its focus areas are the engineering sciences,
natural sciences, life sciences and medicine, combined with economic and social
sciences. TUM acts as an entrepreneurial university that promotes talents and
creates value for society. In that it profits from having strong partners in
science and industry. It is represented worldwide with a campus in Singapore as
well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and São
Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde,
and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won
recognition as a German "Excellence University." In international 
rankings, TUM
regularly places among the best universities in Germany. www.tum.de
More stories: Technische Universität München
More stories: Technische Universität München
  • 24.05.2018 – 11:59

    Die Spitze der Miniaturisierung: Schalten mit Molekülen

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 10510 - E-Mail: presse@tum.de Dieser Text im Web: https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34665/ PRESSEMITTEILUNG Schalten mit Molekülen Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln Ein internationales Forscherteam unter Leitung von Physikern der Technischen ...

  • 23.05.2018 – 16:55

    Phase separation: A simple mechanism could have been decisive for the development of life

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34660/ High resolution images: https://mediatum.ub.tum.de/1444195 NEWS RELEASE In the beginning was the phase separation A simple mechanism could ...