All Stories
Follow
Subscribe to Technische Universität München

Technische Universität München

How roots grow hair: "Smoke detectors" in plants also control the growth of root hair

TECHNICAL UNIVERSITY OF MUNICH

Corporate Communications Center

phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de

This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/35739/

High resolution images: https://mediatum.ub.tum.de/1521816

NEWS RELEASE

How roots grow hair

"Smoke detectors" in plants also control the growth of root hair

The roots of plants can do a lot of things: They grow in length to reach water, they can bend to circumvent stones, and they form fine root hairs enabling them to absorb more nutrients from the soil. A team of researchers led by scientists at the Technical University of Munich (TUM) has now identified an important regulator of this process.

If a forest fire destroys larger plants, seeds of so called fire-followers see their chance: these have a receptor protein that can "smell" certain molecules generated in smoke of burnt plant material, so-called karrikins. The receptor protein called KAI2 sets off a signal cascade causing the seeds to germinate.

A team of researchers led by Caroline Gutjahr, professor for plant genetics at the TUM School of Life Sciences Weihenstephan, has now discovered that it also plays an important role in regulating the growth of roots.

Root hairs increase the root surface area

To achieve a large surface area through which water and nutrients can be absorbed, the roots of plants grow fine root hairs. José Antonio Villaécija-Aguilar, a Ph. D. student in Caroline Gutjahr's team, has now made the discovery that KAI2 is both necessary for the growth of this root hair and for the downward growth of roots.

"It is likely that this not only applies to the thale cress (Arabidopsis), which can be found almost everywhere in the world and is used by us as a model plant," Caroline Gutjahr says, "but possibly also for many other plants, for example cereal crops."

Smoke molecules cause root hairs to grow

To check their hypothesis, the team of researchers exposed young arabidopsis plants to the karrikin molecules present in smoke. This indeed significantly increased the growth of root hairs.

"Our results are also interesting in the light of evolution," Caroline Gutjahr says. "It is likely that KAI2 was initially responsible for controlling certain development processes in all plants, such as, for example, the development of root hairs and similar structures, in reaction to a plant hormone that is so far unknown. In the course of evolution of fire-activated seeds, KAI2 thas presumably developed the additional feature of detecting smoke."

Use in plant breeding

The findings not only promote a more thorough understanding of how plants work, but can also be important for future sustainable agriculture.

"With this new and better understanding, of which molecular mechanisms play a role in the development of roots and root hairs, we can breed plants which are better able to absorb nutrients and water from the soil," Caroline Gutjahr says. "This can for example help crops to resist longer periods of drought, which may occur more frequently in the future."

Publication:

SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis

José Antonio Villaécija-Aguilar, Maxime Hamon-Josse, Samy Carbonnel, Annika Kretschmar, Christian Schmidt, Corinna Dawid, Tom Bennett, Caroline Gutjahr

PLOS Genetics 15(8): e1008327 - DOI: 10.1371/journal.pgen.1008327

https://doi.org/10.1371/journal.pgen.1008327

High resolution images:

https://mediatum.ub.tum.de/1521816

More information:

The work underlying this publication was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Association) within the scope of the Emmy Noether program (Caroline Gutjahr) and SFB 924 (Corinna Dawid) and the British Biotechnology and Biological Sciences Research Council (BBSRC) (Tom Bennett). The research group of the Assistant Professorship of Plant Genetics (Caroline Gutjahr) cooperated with researchers of the Chair of Food Chemistry and Molecular Sensory Science of the TUM (Corinna Dawid) and the Centre for Plant Science (Tom Bennett) of the University of Leeds (UK).

Contact:

Prof. Dr. Caroline Gutjahr

Professorship of Plant Genetics

TUM School of Life Sciences Weihenstephan

Technical University of Munich

Emil Ramann Str. 4, 85354 Freising, Germany

Tel.: +49 8161 71 2680 - E-mail: caroline.gutjahr@tum.de

Web: http://genetik.wzw.tum.de/index.php?id=6&L=0

The Technical University of Munich (TUM) is one of Europe's leading research universities, with around 550 professors, 42,000 students, and 10,000 academic and non-academic staff. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, combined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with the TUM Asia campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006, 2012 and 2019 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany. www.tum.de

More stories: Technische Universität München
More stories: Technische Universität München
  • 14.10.2019 – 17:01

    TUM welcomes more than 13,000 students

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 22798 - email: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/35734/ NEWS RELEASE TUM welcomes more than 13,000 students Foreign students account for around one third of the total for the first time The Technical University of Munich (TUM) continues to attract talented ...

  • 04.10.2019 – 11:05

    Weak spot in pathogenic bacteria: ClpX-ClpP protein complex could be starting point for new antibiotics

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/35720/ High resolution images: https://mediatum.ub.tum.de/1520810 NEWS RELEASE Weak spot in pathogenic bacteria ClpX-ClpP protein complex could be starting ...