Technische Universität München
Self-assembled complex porous, chiral nano-patterns arise from a simple linear building block
TECHNICAL UNIVERSITY OF MUNICH
Corporate Communications Center
phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de
This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/35868/
High resolution images: https://mediatum.ub.tum.de/1535044
NEWS RELEASE
Pretty with a twist
Complex porous, chiral nano-patterns arise from a simple linear building block
Nanoscience can arrange minute molecular entities into nanometric patterns in an orderly manner using self-assembly protocols. Scientists at the Technical University of Munich (TUM) have functionalized a simple rod-like building block with hydroxamic acids at both ends. They form molecular networks that not only display the complexity and beauty of mono-component self-assembly on surfaces; they also exhibit exceptional properties.
Designing components for molecular self-assembly calls for functionalities that 'interlock'. For example, our genetic information is encoded in two DNA strands, zipped together in a 'spiral staircase' double helix structure in a self-assembly process that is stabilized by hydrogen bonding.
Inspired by nature's 'zippers' researchers at the Technical University of Munich aim to construct functional nanostructures to push the boundaries of man-made structures.
Building blocks for complex nanostructures
Scientists at the Technical University of Munich, diverse in discipline, nationality and gender, joined forces to explore a new feature in two-dimensional architectures: a chemical group named hydroxamic acid.
A conceptually simple building block was prepared at the Chair of Proteomics and Bioanalytics: a rod-like molecule with a hydroxamic acid group at each end. This building block was then transferred to the Chair of Surface and Interface Physics, where its assembly was inspected on atomically planar silver and gold surfaces.
A nano-porous network
A combination of advanced microscopy tools, spectroscopy and density functional theory investigations found that the molecular building block adapts its shape somewhat in the environment of the supporting surface and its neighboring molecules. This affords an unusual manifold of supramolecular surface motifs: two to six molecules held together by intermolecular interactions.
Only a handful of these motifs self-organized into 2-D crystals. Among them, an unparalleled network emerged, whose patterns evoke images of sliced lemons, snowflakes or rosettes. They feature three differently sized pores able to snuggly hold individual small molecules of gas such as carbon monoxide in the smallest, or small proteins like insulin in the largest.
"In this regard, it is a milestone in the tessellations achieved by molecular nanostructures and the number of different pores expressed in crystalline 2-D networks," says Dr. Anthoula Papageorgiou, last author of the publication. "It thus offers unique opportunities in bottom-up nano-templating, which we will explore further."
Nanocages with a twist
Like our left and right hands, the shape of two mirrored cage structures cannot be superimposed. Since the 19th century, academics have characterized this type of object symmetry as 'chiral', from the ancient Greek ???? (hand). These kinds of molecules are frequently found in natural compounds. Chirality influences interactions of polarized light and magnetic properties and plays a vital role in life.
For example, our olfactory receptors react very differently to the two mirror images of the limonene molecule: one smells like lemon, the other like pine. This so-called chiral recognition is a process that can determine whether a molecule acts as medicine or poison.
The inner walls of the obtained nanostructure cages offer sites that can direct guest molecules. The researchers observed such a process in some of the larger pores, where three of the same molecules assembled as a chiral object. At room temperature, this object is in motion, like a music box ballerina, leading to a blurred image.
In their future work, the team hopes to steer these kinds of phenomena for chiral recognition and artificial nano-machinery.
Publication:
C. Jing, B. Zhang, S. Synkule, M. Ebrahimi, A. Riss, W. Auwärter, L. Jiang, G. Médard, J. Reichert, J. V. Barth, and A. C. Papageorgiou
Snapshots of dynamic adaptation: Two-dimensional molecular architectonics with linear bis-hydroxamic acid modules
Angew. Chem. Int. Ed., 58, 52 18948-18956 - DOI: 10.1002/anie.201912247
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201912247
More information:
Funding was provided by the Postdoctoral Council of China, the China Scholarship Council, the International Max Planck Research School of Advanced Photon Science, the European Union's research project 2D-INK, the European Research Council (project NanoSurfs), the German Research Foundation (via Cluster of Excellence Munich-Centre for Advanced Photonics and Heisenberg professorship). Computations were performed on the Shared Hierarchical Academic Research Computing Network (SHARCNET) and the Cedar, Graham, and Niagara clusters of Compute/Calcul Canada.
Earlier press releases with related content:
https://www.tum.de/nc/en/about-tum/news/press-releases/details/34412/
https://www.tum.de/nc/en/about-tum/news/press-releases/details/33260/
High-resolution images:
https://mediatum.ub.tum.de/1535044
Contact:
Dr. Anthoula Papageorgiou
Technical University of Munich
Surface and Interface Physics (E20)
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12618 - E-mail: a.c.papageorgiou@tum.de
Web: https://www.groups.ph.tum.de/en/e20
The Technical University of Munich (TUM) is one of Europe's leading research universities, with around 550 professors, 43,000 students, and 10,000 academic and non-academic staff. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, combined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with the TUM Asia campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006, 2012 and 2019 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany. www.tum.de