All Stories
Follow
Subscribe to Technische Universität München

Technische Universität München

Stellar explosion in Earth's proximity - possible link to the Pleistocene epoch, the period of the Ice Ages?

TECHNICAL UNIVERSITY OF MUNICH

Corporate Communications Center

phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de

This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/36198/

High resolution images: https://mediatum.ub.tum.de/1554681

NEWS RELEASE

Stellar explosion in Earth's proximity

Discovery of iron-60 and manganese-53 substantiates supernova 2.5 million years ago

When the brightness of the star Betelgeuse dropped dramatically a few months ago, some observers suspected an impending supernova - a stellar explosion that could also cause damage on Earth. While Betelgeuse has returned to normal, physicists from the Technical University of Munich (TUM) have found evidence of a supernova that exploded near the Earth around 2.5 million years ago.

The life of stars with a mass more than ten times that of our sun ends in a supernova, a colossal stellar explosion. This explosion leads to the formation of iron, manganese and other heavy elements.

In layers of a manganese crust that are around two and a half million years old a research team led by physicists from the Technical University of Munich has now confirmed the existence of both iron-60 and manganese-53.

"The increased concentrations of manganese-53 can be taken as the "smoking gun" - the ultimate proof that this supernova really did take place," says first author Dr. Gunther Korschinek.

While a very close supernova could inflict massive harm to life on Earth, this one was far enough away. It only caused a boost in cosmic rays over several thousand years. "However, this can lead to increased cloud formation," says co-author Dr. Thomas Faestermann. "Perhaps there is a link to the Pleistocene epoch, the period of the Ice Ages, which began 2.6 million years ago."

Ultra-trace analysis

Typically, manganese occurs on earth as manganese-55. Manganese-53, on the other hand, usually stems from cosmic dust, like that found in the asteroid belt of our solar system. This dust rains down onto the earth continuously; but only rarely do we perceive larger specks of dust that glow as meteorites.

New sediment layers that accumulate year for year on the sea floor preserve the distribution of the elements in manganese crusts and sediment samples. Using accelerator mass spectrometry, the team of scientists has now detected both iron-60 and increased levels of manganese-53 in layers that were deposited about two and a half million years ago.

"This is investigative ultra-trace analysis," says Korschinek. "We are talking about merely a few atoms here. But accelerator mass spectrometry is so sensitive that it even allows us to calculate from our measurements that the star that exploded must have had around 11 to 25 times the size of the sun."

The researchers were also able to determine the half-life of manganese-53 from comparisons to other nuclides and the age of the samples. The result: 3.7 million years. To date, there has only been a single measurement to this end worldwide.

Publication:

G. Korschinek, T. Faestermann, M. Poutivtsev, A. Arazi, K. Knie, G. Rugel, and A. Wallner

Supernova-Produced 53Mn on Earth

Physical Review Letters, 125, 031101, July 17, 2020 - DOI: 10.1103/PhysRevLett.125.031101

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.031101

Further information:

The research was funded by the German Research Foundation as part of the Cluster of Excellence "Origin and Structure of the Universe". In addition to the Technical University of Munich, the Laboratorio TANDAR, the Comisión Nacional de Energía Atómica, San Martín (Argentina), the Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Buenos Aires (Argentina) and the Helmholtz Center in Dresden-Rossendorf were participated in the research.

Earlier press releases about the supernova research at TUM:

08.05.2013: First biological evidence of a supernova in our cosmic neighborhood

https://www.tum.de/nc/en/about-tum/news/press-releases/details/30833/

14.04.2016: Supernova iron found on the moon

https://www.tum.de/nc/en/about-tum/news/press-releases/details/33038/

10.08.2016: Detection of a time-resolved supernova signal in microfossils

https://www.tum.de/nc/en/about-tum/news/press-releases/details/33318/

20.08.2019: Stardust in the Antarctic snow

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35654/

High resolution images:

https://mediatum.ub.tum.de/1554681

Contact:

Dr. Gunther Korschinek

Technical University of Munich

Department of Physics

E-mail: korschin@tum.de

Dr. Thomas Faestermann

Technical University of Munich

Department of Physics

E-mail: thomas.faestermann@ph.tum.de

The Technical University of Munich (TUM) is one of Europe's leading research universities, with around 600 professors, 43,000 students, and 10,000 academic and non-academic staff. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, combined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with the TUM Asia campus in Singapore as well as offices in Beijing, Brussels, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006, 2012, and 2019 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany. www.tum.de

More stories: Technische Universität München
More stories: Technische Universität München
  • 29.09.2020 – 14:55

    Intelligent software for a better understanding of plant tissue development

    Corporate Communications Center phone: +49 8161 5403 - email: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/36238/ Images for journalists: https://mediatum.ub.tum.de/1575701 NEWS RELEASE Intelligent software for a better understanding of plant tissue development 3D images display plant organs down ...

  • 24.09.2020 – 12:44

    Multiple spin echoes create new opportunities for working with quantum information

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/36234/ High resolution images: https://mediatum.ub.tum.de/1575373 NEWS RELEASE The Return of the Spin Echo Multiple echoes as a result of a strong link ...

  • 23.09.2020 – 15:15

    Insects as food for farm animals

    Corporate Communications Center phone: +49 8161 5403 - email: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/36232/ Images for journalists: https://mediatum.ub.tum.de/1574665 NEWS RELEASE Start-up company FarmInsect offers alternative to conventional animal feed Insects as food for farm animals The start-up company FarmInsect has developed a technology to breed insect larvae as protein feed for farm ...