All Stories
Follow
Subscribe to Technische Universität München

Technische Universität München

Schwingende Berge

TECHNISCHE UNIVERSITÄT MÜNCHEN

Corporate Communications Center

Tel.: +49 89 289 10519 - E-Mail: presse@tum.de - Web: www.tum.de

Dieser Text im Web: https://www.tum.de/die-tum/aktuelles/pressemitteilungen/details/37081

PRESSEMITTEILUNG

Schwingende Berge

Resonanzschwingungen am Matterhorn gemessen und simuliert

Das Matterhorn wirkt wie ein unverrückbarer, massiver Berg, der seit Tausenden von Jahren in der Landschaft über Zermatt thront. Eine Studie zeigt nun, dass dieser Eindruck täuscht. Ein internationales Forschungsteam hat nachgewiesen, dass das Matterhorn dauernd leicht in Bewegung ist: Der Gipfel schwingt in gut zwei Sekunden um wenige Nano- bis Mikrometer hin und her, angeregt durch seismische Wellen in der Erde. Diese werden durch natürliche Quellen wie die Gezeiten, die Meeresbrandung, den Wind und Erdbeben oder durch menschliche Aktivitäten erzeugt.

Jedes Objekt schwingt, wenn es angeregt wird, mit bestimmten Frequenzen, wie etwa eine Stimmgabel oder die Saiten einer Gitarre. Die so genannten Eigenfrequenzen hängen in erster Linie von der Geometrie des Objekts und seinen Materialeigenschaften ab. Das Phänomen wird auch bei Brücken, Hochhäusern und sogar bei Bergen beobachtet.

„Wir wollten wissen, ob sich solche Schwingungen auch an einem großen Berg wie dem Matterhorn nachweisen lassen", sagt Dr. Samuel Weber, der die Studie während eines Postdoktorats an der Professur für Hangbewegungen der Technischen Universität München (TUM) durchführte und mittlerweile beim WSL-Institut für Schnee- und Lawinenforschung SLF arbeitet. Er betont, dass die interdisziplinäre Zusammenarbeit mit Forschenden des Schweizerischen Erdbebendienstes an der ETH Zürich, des Instituts für Technische Informatik und Kommunikationsnetze der ETH Zürich sowie der Geohazards Research Group der Universität Utah (USA) für den Erfolg dieses Projekts besonders wichtig war.

Hochalpine Messeinrichtungen

Für die Studie installierten die Wissenschaftler am Matterhorn mehrere Seismometer, eines davon unmittelbar am Gipfel auf 4470 Meter über dem Meer und ein weiteres im Solvay-Biwak, einer Notunterkunft am Nordostgrat, besser bekannt als Hörnligrat. Eine weitere Messstation am Fuß des Berges diente als Referenz. Die große Erfahrung von Jan Beutel (ETH Zürich/Universität Innsbruck) und Samuel Weber mit Einrichtungen zur Messung von Felsbewegungen im Hochgebirge half dem Team beim Aufbau des Messnetzes. Die Daten werden heute automatisch an den Erdbebendienst übermittelt und für spezifische Analysen verwendet.

Die Seismometer zeichneten alle Bewegungen des Berges mit hoher Auflösung auf. Durch eine 80-fache zeitliche Beschleunigung wurden die aufgezeichneten Schwingungen für das menschliche Ohr hörbar gemacht. Aus den Messdaten leitete das Team Frequenz und Richtung der Resonanzschwingungen ab. Die Messungen zeigen, dass das Matterhorn mit einer Frequenz von 0.42 Hertz ungefähr in Nord-Süd-Richtung und mit einer zweiten, ähnlichen Frequenz in Ost-West-Richtung schwingt.

Verstärkte Schwingungen am Gipfel

Im Vergleich zur Referenzstation am Fuß des Berges waren die gemessenen Bewegungen auf dem Gipfel bis zu 14-fach verstärkt, betrugen aber bei Anregung durch die seismische Bodenunruhe auch dort lediglich wenige Nanometer bis Mikrometer. Die Verstärkung der Bodenbewegungen mit zunehmender Höhe lässt sich dadurch erklären, dass der Gipfel frei schwingen kann, während der Fuß des Bergs fixiert ist. Man kann das mit einem Baum im Wind vergleichen, bei dem sich die Krone stärker als der Stamm bewegt.

Verstärkungen der Bodenbewegung am Matterhorn konnten auch bei Erdbeben gemessen werden. Die Analyse der seismischen Bodenunruhe und der Erdbebenanregungen wird beispielsweise verwendet, um Fels- und Hanginstabilitäten in Bezug auf ihr Verhalten bei Erdbeben zu beurteilen. Jeff Moore von der Universität Utah, der die Studie am Matterhorn initiiert hat, erklärt: „Wir vermuten, dass Gebiete, in denen die Bodenvibrationen verstärkt werden, anfälliger für Rutschungen und Felsstürze sein könnten, wenn ein Berg von einem Erdbeben erschüttert wird."

Solche Schwingungen sind keine Eigenart des Matterhorns. Es ist bekannt, dass viele Berge in ähnlicher Art und Weise schwingen. Forschende des Erdbebendienstes führten dazu Vergleichsmessungen am Großen Mythen durch. Dieser Gipfel in der Zentralschweiz besitzt eine ähnliche Form wie das Matterhorn, ist aber deutlich kleiner.

Wie erwartet schwingt der Große Mythen mit einer rund 4-mal höheren Frequenz als das Matterhorn, denn kleinere Objekte schwingen grundsätzlich mit höheren Frequenzen. Die Forschenden der Universität Utah haben die Resonanzschwingungen des Matterhorns und des Großen Mythen im Computer simuliert und konnten sie dadurch sichtbar machen. Die US-Wissenschaftler hatten bisher vor allem kleinere Objekte untersucht wie die Felsbögen im Arches-Nationalpark in Utah. „Es war spannend zu sehen, dass unsere Simulationen auch für einen großen Berg wie das Matterhorn funktionieren und die Messresultate diese bestätigen", sagt Jeff Moore.

Publikation:

Samuel Weber, Jan Beutel, Mauro Häusler, Paul R. Geimer, Donat Fäh, and Jeffrey R. Moore (2021): Spectral amplification of ground motion linked to resonance of large-scale mountain landforms. In: Earth and Planetary Science Letters. DOI: 10.1016/j.epsl.2021.117295

Mehr Informationen:

Bildmaterial, Animationen und Tondateien (hörbar gemachte Schwingungen)

Kontakt:

Prof. Dr. rer. nat. Michael Krautblatter

Technische Universität München

Professur für Hangbewegungen

Tel.: +49 89 289 25866

m.krautblatter(at)tum.de

Dr. Samuel Weber

WSL-Institut für Schnee- und Lawinenforschung SLF

samuel.weber(at)slf.ch

Die Technische Universität München (TUM) ist mit mehr als 600 Professorinnen und Professoren, 48.000 Studierenden sowie 11.000 Mitarbeiterinnen und Mitarbeitern eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit den Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit dem Campus TUM Asia in Singapur sowie Verbindungsbüros in Brüssel, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006, 2012 und 2019 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands.

More stories: Technische Universität München
More stories: Technische Universität München
  • 20.12.2021 – 10:33

    Wie AfD-Wahlergebnisse rechtsextreme Demonstrationen hervorrufen

    TECHNISCHE UNIVERSITÄT MÜNCHENCorporate Communications Center Tel.: +49 89 289 22798 - E-Mail: presse@tum.de - Web: www.tum.de PRESSEMITTEILUNG Wie AfD-Wahlergebnisse rechtsextreme Demonstrationen hervorrufen Studie zeigt Effekte auf Kundgebungen bei überraschend hohen Stimmanteilen In weltoffen orientierten Kommunen steigt die Wahrscheinlichkeit rechtsextremer ...

  • 15.12.2021 – 14:27

    TUM-Studierende entwickeln Lebensrettungsdrohne mit Defibrillator an Bord

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 22779 - E-Mail: presse@tum.de - Web: www.tum.de Hochaufgelöste Fotos: https://mediatum.ub.tum.de/1637618 Dieser Text im Web: http://go.tum.de/188673 PRESSEMITTEILUNG TUM-Studierende entwickeln schnelle Einsatzhilfe bei Herzattacken Lebensrettungsdrohne mit Defibrillator an Bord Bei ...