All Stories
Follow
Subscribe to Technische Universität München

Technische Universität München

Neutronen erkennen Verstopfungen in Pipelines – neue Methode hilft, Unterwasserpipelines offen zu halten

TECHNISCHE UNIVERSITÄT MÜNCHEN

Corporate Communications Center

Tel.: +49 89 289 10510 - E-Mail: presse@tum.de

Dieser Text im Web: https://www.tum.de/die-tum/aktuelles/pressemitteilungen/details/37149

Bildmaterial mit hoher Auflösung: https://mediatum.ub.tum.de/1639758

PRESSEMITTEILUNG

N eutronen erkennen Verstopfungen in Pipelines

Neue, Neutronen-basierte Methode hilft, Unterwasserpipelines offen zu halten

Industrie und private Verbraucher sind auf Öl- und Gaspipelines angewiesen, die sich über Tausende von Kilometern unter Wasser erstrecken. Nicht selten verstopfen Ablagerungen diese Pipelines. Bisher gibt es nur wenige Möglichkeiten, die Bildung von Pfropfen in-situ und zerstörungsfrei zu identifizieren. Neutronen können das erheblich erleichtern, wie Messungen an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM) zeigen.

Öl- und Gaspipelines sind die Schlagadern unserer Energieversorgung. Wie die Nord Stream-Pipelines transportieren sie die Energieträger über weite Strecken unter Wasser zu Lager- und Produktionsstätten an Land.

Aber nicht nur Lieferengpässe können zu Versorgungsproblemen führen. Unter bestimmten Bedingungen kann das Gemisch in den Pipelines, das typischerweise aus Gas, Öl und Wasser besteht, sehr zähflüssig werden und sogar feste Phasen bilden.

Besonders unangenehm für Betreiber sind feste Hydrate, die sich aus Gas und Wasser bilden, etwa, wenn sich das Gemisch bei längerem Stillstand der Pipeline auf die niedrigen Temperaturen des Meeresbodens abkühlt.

Bisherige Ansätze funktionieren unter Wasser nicht

Um eine Verstopfung vor Ort zu beheben, muss zunächst der betroffene Abschnitt der Pipeline gefunden werden. Da sie sich überall entlang der Pipeline gebildet haben kann, ist es eine große Herausforderung, die Verstopfung von außen zu lokalisieren.

Bisher werden Wärmebildkameras und Gammastrahlen verwendet, um die Verstopfungen zu erkennen. Keine dieser Methoden funktioniert jedoch unter Wasser. Ultraschall hingegen dringt problemlos in Wasser ein, allerdings sind durch die Pipelinewand die Hydratblöcke nur im Nahbereich von außen zu erkennen.

Da Unterwasserpipelines in Tiefen von bis zu 2000 Metern verlegt werden und oft natürlicherweise von Meeresbodenmaterialien wie Sand oder Schlick bedeckt sind, wirft dies weitere praktische Schwierigkeiten auf. Hinzu kommt, dass sich die akustischen Impedanzen der Hydratphase und anderen Phasen des Rohölgemischs kaum unterscheiden.

Neutronen als perfekte Sonde

TechnipFMC, ein auf Unterwasserpipelines spezialisiertes Unternehmen mit weltweit rund 20.000 Mitarbeitern, war „auf der Suche nach einer effizienteren Methode, um trotz dicker Wände solche Pfropfen berührungslos, zerstörungsfrei und zuverlässig aufspüren zu können“, sagt Dr. Xavier Sebastian, ein Projektleiter des Unternehmens.

„Neutronen sind die perfekte Sonde für die anstehende Aufgabe“, schlug Dr. Sophie Bouat, CEO von Science-S.A.V.E.D. (Scientific Analysis Vitalises Enterprise Development) daraufhin vor und stellte den Kontakt zu den Wissenschaftlern des Heinz Maier-Leibnitz-Zentrums in Garching bei München her.

„Mit der Prompten Gamma-Neutronen-Aktivierungsanalyse lassen sich insbesondere leichte Atome und Wasserstoff sehr genau nachweisen“, fährt sie fort. Da sich Hydrate sowie Öl und Gas in ihrem Wasserstoffgehalt erheblich unterscheiden, sollte es möglich sein, Verstopfungen durch Messung der Wasserstoffkonzentration zu erkennen.

Machbarkeitsstudie am FRM II

Dr. Ralph Gilles, Industriekoordinator an der Forschungs-Neutronenquelle FRM II führte zusammen mit weiteren Kollegen der Technischen Universität München und des Forschungszentrums Jülich eine Machbarkeitsstudie zu diesem Thema durch.

Mit dem Instrument PGAA (Prompt Gamma Activation Analysis), das kalte Neutronen des FRM II nutzt, durchleuchtete das Forschungsteam Proben und konnte belegen, dass auf diese Weise tatsächlich zwischen Öl und Gas beziehungsweise dem Pfropf unterschieden werden kann.

An der Radiographie- und Tomographieanlage NECTAR und dem Instrument FaNGAS (Fast Neutron Induced Gamma Ray Spectroscopy) zeigten sie mit Hilfe schneller Neutronen aus dem FRM II, dass eine ausreichend große Anzahl von Neutronen die Metallwände der Pipeline durchdringen, um die jeweilige Messung zu ermöglichen, und dass die Messung auch unter Wasser gut funktioniert.

Eine kleine Neutronenquelle erkennt Pfropfen

Die Ergebnisse zeigen klar, dass Neutronen für diese Anwendung ideal geeignet sind. „Unsere Experimente haben außerdem gezeigt, dass wir sogar einen in Entstehung befindlichen Pfropf von einer voll entwickelten Blockade unterscheiden können“, sagt Dr. Ralph Gilles. „Das ist sehr vorteilhaft, denn dann kann man sogar ein Rohrsegment präventiv erhitzen, um die Verstopfung wegzuschmelzen, bevor sie sich vollständig ausbildet.“

In der Praxis bewegt sich ein mobiler Detektor mit einer kleinen Neutronenquelle entlang der Pipeline hin und her, um nach Pfropfen zu suchen. „Wir freuen uns sehr, dass wir mit Hilfe der Messungen an der Forschungs-Neutronenquelle nun eine effiziente Methode gefunden haben, die in Zukunft das Auffinden dieser Pfropfen deutlich erleichtert“, sagt Dr. Xavier Sebastian.

Publikation:

Sophie Bouat, Ludovic Pinier, Xavier Sebastian, Adrian Losko, Rudolf Schütz, Michael Schulz, Zsolt Revay, Zeljko Ilic, Eric Mauerhofer, Thomas Brückel & Ralph Gilles

Detection of hydrate plugs inside submarine pipelines using neutrons

Nondestructive Testing and Evaluation Oct 25, 2021 – DOI: 10.1080/10589759.2021.1990284

Link: https://www.tandfonline.com/doi/full/10.1080/10589759.2021.1990284

Mehr Informationen:

An der Analyse waren neben Wissenschaftlern der Technischen Universität München auch Forscher des Forschungszentrums Jülich und der RWTH Aachen beteiligt. Der Kontakt zur Firma TechnipFMC wurde durch das Unternehmen Science-S.A.V.E.D vermittelt. (Scientific Analysis Vitalises Enterprise Development). TechnipFMC finanzierte die Strahlzeit am FRM II.

Für die Forschungsarbeit genutzte Instrumente:

PGAA: https://mlz-garching.de/pgaa/deFANGAS: https://mlz-garching.de/fangas/de

NECTAR: https://mlz-garching.de/medapp-nectar/de

Bilder mit hoher Auflösung:

https://mediatum.ub.tum.de/1639758

Kontakt:

Dr. habil. Ralph Gilles

Industriekoordinator

Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)

Technische Universität München

Lichtenbergstr. 1, 85748 Garching

Phone: +49 89 289 14665 – E-Mail: ralph.gilles@frm2.tum.de

Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): https://www.frm2.tum.de/

Heinz Maier-Leibnitz Zentrum (MLZ): https://mlz-garching.de/

Das Heinz Maier-Leibnitz Zentrum (MLZ) in Garching bei München ist ein weltweit führendes Zentrum für Spitzenforschung mit Neutronen und Positronen. Als Serviceeinrichtung für Gastwissenschaftler stellt das MLZ einzigartige, leistungsfähige wissenschaftliche Instrumente im Bereich der Neutronenforschung zur Verfügung. Das MLZ ist eine Kooperation der Technischen Universität München, des Forschungszentrums Jülich und des Helmholtz-Zentrums hereon. Es wird gemeinsam finanziert durch das Bundesministerium für Bildung und Forschung, das Bayerische Staatsministerium für Wissenschaft und Kunst sowie Partner der Kooperation.

Die Technische Universität München (TUM) ist mit mehr als 600 Professorinnen und Professoren, 48.000 Studierenden sowie 11.000 Mitarbeiterinnen und Mitarbeitern eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit den Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit dem Campus TUM Asia in Singapur sowie Verbindungsbüros in Brüssel, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006, 2012 und 2019 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands.

More stories: Technische Universität München
More stories: Technische Universität München
  • 21.01.2022 – 11:35

    Forschung zu ethischen Aspekten Künstlicher Intelligenz

    TECHNISCHE UNIVERSITÄT MÜNCHENCorporate Communications Center Tel.: +49 89 289 22779 - E-Mail: presse@tum.de - Web: www.tum.de Dieser Text im Web: http://go.tum.de/815305 PRESSEMITTEILUNG Forschung zu ethischen Aspekten Künstlicher Intelligenz Neue Zusammenarbeit von TUM und Fujitsu Der Einsatz Künstlicher Intelligenz (KI) im Alltag ist nicht nur eine technische Herausforderung, sondern wirft auch eine Reihe ...

  • 17.01.2022 – 12:23

    TUM stärkt Forschung zur Authentizität und Sicherheit von Lebensmitteln

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 22779 - E-Mail: presse@tum.de - Web: www.tum.de Dieser Text im Web: http://go.tum.de/776208 Bild: https://mediatum.ub.tum.de/image/1639345 PRESSEMITTEILUNG Gemeinsame Berufung mit Bayerischem Landesamt für Gesundheit und Lebensmittelsicherheit TUM stärkt Forschung zur Authentizität ...