Technische Universität München
Robotics: New skin-like sensors fit almost everywhere
TECHNICAL UNIVERSITY OF MUNICH
PRESS RELEASE
Automated production for different objects
Robotics: New skin-like sensors fit almost everywhere
- New approach makes it possible to equip objects of arbitrary shapes with smart sensors.
- Innovative soft sensors are intended for use in robotics and especially in prosthetics.
- Researchers see major advantages in the seamless and customizable sensor technology versus existing approaches.
Researchers from the Munich Institute of Robotics and Machine Intelligence (MIRMI) at the Technical University of Munich (TUM) have developed an automatic process for making soft sensors. These universal measurement cells can be attached to almost any kind of object. Applications are envisioned especially in robotics and prosthetics.
“Detecting and sensing our environment is essential for understanding how to interact with it effectively,” says Sonja Groß. An important factor for interactions with objects is their shape. “This determines how we can perform certain tasks,” says the researcher from the Munich Institute of Robotics and Machine Intelligence (MIRMI) at TUM. In addition, physical properties of objects, such as their hardness and flexibility, influence how we can grasp and manipulate them, for example.
Artificial hand: interaction with the robotic system
The holy grail in robotics and prosthetics is a realistic emulation of the sensorimotoric skills of a person such as those in a human hand. In robotics, force and torque sensors are fully integrated into most devices. These measurement sensors provide valuable feedback on the interactions of the robotic system, such as an artificial hand, with its surroundings. However, traditional sensors have been limited in terms of customization possibilities. Nor can they be attached to arbitrary objects. In short: until now, no process existed for producing sensors for rigid objects of arbitrary shapes and sizes.
New framework for soft sensors presented for the first time
This was the starting point for the research of Sonja Groß and Diego Hidalgo, which they have now presented at the ICRA robotics conference in London. The difference: a soft, skin-like material that wraps around objects. The research group has also developed a framework that largely automates the production process for this skin. It works as follows: “We use software to build the structure for the sensory systems,” says Hidalgo. “We then send this information to a 3D printer where our soft sensors are made.” The printer injects a conductive black paste into liquid silicone. The silicone hardens, but the paste is enclosed by it and remains liquid. When the sensors are squeezed or stretched, their electrical resistance changes. “That tells us how much compression or stretching force is applied to a surface. We use this principle to gain a general understanding of interactions with objects and, specifically, to learn how to control an artificial hand interacting with these objects,” explains Hidalgo. What sets their work apart: the sensors embedded in silicon adjust to the surface in question (such as fingers or hands) but still provide precise data that can be used for the interaction with the environment.
New perspectives for robotics and especially prosthetics
“The integration of these soft, skin-like sensors in 3D objects opens up new paths for advanced haptic sensing in artificial intelligence,” says MIRMI Executive Director Prof. Sami Haddadin. The sensors provide valuable data on compressive forces and deformations in real time – thus providing immediate feedback. This expands the range of perception of an object or a robotic hand – facilitating a more sophisticated and sensitive interaction. Haddadin: “This work has the potential to bring about a general revolution in industries such as robotics, prosthetics and the human/machine interaction by making it possible to create wireless and customizable sensor technology for arbitrary objects and machines.”
Publication
S. Groß, D. Hidalgo, S. Breimann, N. Stein, A. Ganguly, D. Naceri, S. Haddadin; Soft Sensing Skin for Arbitrary Objects: An Automatic Framework, IEEE International Conference on Robotics and Automation (ICRA), 2023
Further information
- Scientific video showing the entire process: https://www.youtube.com/watch?v=i43wgx9bT-E
- Sonja Groß and Diego Hidalgo are currently serving as research associates and leading authors of the paper “Soft Sensing Skin for Arbitrary Objects: An Automatic Framework” at the Munich Institute of Robotics and Machine Intelligence (MIRMI), TUM. Working alongside them are senior scientists Dr.-Ing. Amartya Ganguly and Dr.-Ing. Abdeldjallil Naceri, who bring their extensive expertise to contribute to the research conducted at MIRMI. With MIRMI, TUM has created an integrative research centre for science and technology to develop innovative and sustainable solutions for key challenges of our time. Led by Prof. Sami Haddadin as Executive Director, the institution has leading expertise in key areas of robotics, perception and data science. More information: https://www.mirmi.tum.de/.
Additional editorial information:
Photos for download: http://go.tum.de/679599; http://go.tum.de/838963; http://go.tum.de/816901; http://go.tum.de/289008
Scientific contact
Sonja Groß
Researcher at Munich Institute of Robotics and Machine Intelligence (MIRMI)
Technical University of Munich (TUM)
Diego Hidalgo-Carvajal
Researcher at Munich Institute of Robotics and Machine Intelligence (MIRMI)
Technical University of Munich (TUM)
diego.hidalgo-carvajal@tum.de
TUM Communications Center contact
Andreas Schmitz
Press Officer Robotics and Machine Intelligence
0162-27 46 193
presse@tum.de
The Technical University of Munich (TUM) is one of Europe’s leading research universities, with more than 600 professors, 50,000 students, and 11,000 academic and non-academic staff. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, combined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with the TUM Asia campus in Singapore as well as offices in Beijing, Brussels, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006, 2012, and 2019 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany.