Alle Storys
Folgen
Keine Story von Fraunhofer Institut für Angewandte Festkörperphysik IAF mehr verpassen.

Fraunhofer Institut für Angewandte Festkörperphysik IAF

Weltweit erste Herstellung des Materials Aluminiumscandiumnitrid per MOCVD

Weltweit erste Herstellung des Materials Aluminiumscandiumnitrid per MOCVD
  • Bild-Infos
  • Download

Wissenschaftler am Fraunhofer-Institut für Angewandte Festkörperphysik IAF haben das bislang Unmögliche geschafft: Es ist ihnen - weltweit zum ersten Mal - gelungen, Aluminiumscandiumnitrid (AlScN) per metallorganischer chemischer Gasphasenabscheidung (MOCVD) herzustellen. Bauelemente auf der Basis von AlScN werden als die nächste Generation der Leistungselektronik angesehen. Das Fraunhofer IAF kommt somit dem Ziel, Leistungselektronik für industrielle Anwendungen auf Basis von Transistoren aus AlScN herzustellen, einen entscheidenden Schritt näher.

Transistoren basierend auf dem Material AlScN gelten als vielversprechend für den Einsatz in industriellen Anwendungen wie der Datenübertragung, der Satelliten-kommunikation sowie für Radarsysteme oder autonomes Fahren. Denn Bauelemente auf der Basis von Silizium (Si) stoßen bei diesen Anwendungen immer häufiger an ihre physikalischen Grenzen. So können Si-Bauelemente nicht mehr kleiner werden, als es der aktuelle Stand der Forschung zulässt. Und wenn die immer weiter steigenden Datenmengen mit der aktuellen Si-Technologie verarbeitet werden müssten, würden die Serverräume eine solch große Fläche einnehmen, die wirtschaftlich und ökologisch nicht vertretbar wäre. Sogenannte HEMTs (high electron mobility transistors) übertreffen die Möglichkeiten der Si-Bauteile um ein Vielfaches. Entscheidend für den Erfolg der HEMT-Strukturen sind die Eigenschaften der ihnen zugrundeliegenden Materialien. AlScN besitzt hervorragende Eigenschaften, die höhere Ladungsträgerkonzentrationen ermöglichen als andere Materialien. Zukünftig sollen mit AlScN deutlich leistungsstärkere und effizientere HEMTs realisiert werden.

Bisherige Herstellungsverfahren scheitern an Qualität und Produktivität

Die Herstellung von AlScN birgt jedoch entscheidende Herausforderungen. Nach dem Stand der Technik können AlScN-Schichten mittels Sputtern hergestellt werden. Allerdings ist die Qualität dieser Schichten für elektronische Anwendungen, wie LEDs und Hochleistungstransistoren, nicht ausreichend. Alternativ ist es möglich, AlScN per Molekularstrahlepitaxie (MBE) herzustellen. Mit diesem Verfahren können hohe Scandium-Anteile in der Verbindung erhalten werden. Auch die Qualität ist ausreichend für die Herstellung mikroelektronischer Bauelemente. Jedoch ist das Verfahren aufwendig und die Produktivität bei diesem Verfahren zu gering, um es industriell einsetzen zu können.

Metallorganische chemische Gasphasenabscheidung verspricht industrietaugliche Produktion

Die Herstellung von AlScN per MOCVD verspricht sowohl eine für industrielle Anwendungen ausreichende Qualität sowie Produktivität. "Wir wussten, dass Forscher in der Vergangenheit versucht hatten, Galliumscandiumnitrid mittels MOCVD herzustellen, aber erfolglos blieben. Wir wissen auch, dass viele Forscher weltweit daran arbeiten, AlScN-Transistoren zu entwickeln, aber vor uns hat es niemand mittels MOCVD geschafft, obwohl dies ein vielversprechender Weg für die Industrie sein könnte", erklärt Stefano Leone, Gruppenleiter am Fraunhofer IAF. Bei dem MOCVD-Verfahren wird Gas über einen beheizten Wafer geleitet. Durch die Wärmeeinwirkung werden bestimmte Moleküle aus dem Gas freigesetzt, die sich in die Kristallstruktur des Wafers einbauen. Durch die Regulierung des Gasstroms, der Temperatur und des Drucks kann die Kristallzusammensetzung präzise eingestellt werden und auch das Wachstum von unterschiedlichen Materialschichten übereinander ist durch den schnellen Austausch der Gase möglich.

Fraunhofer IAF gelingt Novum

Die Herausforderung für die Forscher des Fraunhofer IAF: Es gibt kein Gas für Scandium. Die Moleküle (Präkursoren) für Scandium sind sehr groß und schwer in die Gas-Phase zu bringen. "Wir haben untersucht, was der beste Vorläufer für Scandium sein könnte, und überlegt, wie unser MOCVD-Reaktor für die notwendigen Prozesse umgebaut werden kann. Wir haben viel recherchiert und diskutiert und schließlich ein Setup entwickelt, das wir jetzt sogar patentieren lassen. Letztendlich haben wir es geschafft, AlScN-Schichten per MOCVD mit sehr hoher Kristallqualität und der richtigen Menge an Scandium zu züchten, um die nächste Generation von elektronischen Leistungstransistoren zu entwickeln", freut sich Leone über die erbrachten Leistungen. Die MOCVD-Anlage am Fraunhofer IAF wurde von der Forschergruppe so umgebaut, dass nun ein hochwertiger und reproduzierbarer Herstellungsprozess von AlScN realisiert werden kann.

Erste AlScN-Schichten für Transistoren aus der MOCVD

Nach der erfolgreichen Abscheidung des AlScN in der MOCVD-Anlage gelang auch die Herstellung der ersten AlScN-Schichten für Transistoren. Mit einem Widerstand von ~200 ohm/sq., einer Beweglichkeit von ~600 cm²/Vs und einer Ladungsträgerdichte von ~4,0 x 1013 cm-2 erreichen diese Schichten bereits vielversprechende Ergebnisse. Die Ziele der Forscher sind es nun, den Widerstand zu verringern, die Beweglichkeit zu erhöhen und die Materialqualität weiter zu optimieren. So soll die Leistungsfähigkeit von zukünftigen Transistoren noch weiter verbessert werden und das Fraunhofer IAF damit dem Ziel näherkommen, AlScN-HEMTs für die leistungselektronischen Anwendungen der Industrie bereitzustellen.

Jennifer Funk
Fraunhofer-Institut für Angewandte Festkörperphysik IAF
Tullastraße 72 | 79108 Freiburg
+49 761 5159-418 
jennifer.funk@iaf.fraunhofer.de
www.iaf.fraunhofer.de
Weitere Storys: Fraunhofer Institut für Angewandte Festkörperphysik IAF
Weitere Storys: Fraunhofer Institut für Angewandte Festkörperphysik IAF