Alle Storys
Folgen
Keine Story von Technische Universität München mehr verpassen.

Technische Universität München

Activity of fuel cell catalysts doubled - Modelling leads to the optimum size for platinum fuel cell catalysts

TECHNICAL UNIVERSITY OF MUNICH

Corporate Communications Center

phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de

This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/35554/

High resolution images: https://mediatum.ub.tum.de/1509771

NEWS RELEASE

Activity of fuel cell catalysts doubled

Modelling leads to the optimum size for platinum fuel cell catalysts

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus electricity from wind power plants. However, the platinum used in fuel cells is rare and extremely expensive, which has been a limiting factor in applications up to now.

A research team at the Technical University of Munich (TUM) led by Roland Fischer, Professor for Inorganic and Organometallic Chemistry, Aliaksandr Bandarenka, Physics of Energy Conversion and Storage and Alessio Gagliardi, Professor for Simulation of Nanosystems for Energy Conversion, has now optimized the size of the platinum particles to such a degree that the particles perform at levels twice as high as the best processes commercially available today.

Ideal: A platinum "egg" only one nanometer big

In fuel cells, hydrogen reacts with oxygen to produce water, generating electricity in the process. Sophisticated catalysts at the electrodes are required in order to optimize this conversion. Platinum plays a central role in the oxygen-reduction reaction.

Searching for an ideal solution, the team created a computer model of the complete system. The central question: How small can a cluster of platinum atoms be and still have a highly active catalytic effect? "It turns out that there are certain optimum sizes for platinum stacks," explains Fischer.

Particles measuring about one nanometer and containing approximately 40 platinum atoms are ideal. "Platinum catalysts of this order of size have a small volume but a large number of highly active spots, resulting in high mass activity," says Bandarenka.

Interdisciplinary collaboration

Interdisciplinary collaboration at the Catalysis Research Center (CRC) was an important factor in the research team's results. Combining theoretical capabilities in modelling, joint discussions and physical and chemical knowledge gained from experiments ultimately resulted in a model showing how catalysts can be designed with the ideal form, size and size distribution of the components involved.

In addition, the CRC also has the expertise needed to create and experimentally test the calculated platinum nano-catalysts. "This takes a lot in terms of the art of inorganic synthesis," says Kathrin Kratzl, together with Batyr Garlyyev and Marlon Rück, one of the three lead authors of the study.

Twice as effective as the best conventional catalyst

The experiment exactly confirmed the theoretical predictions. "Our catalyst is twice as effective as the best conventional catalyst on the market," says Garlyyev, adding that this is still not adequate for commercial applications, since the current 50 percent reduction of the amount of platinum would have to increase to 80 percent.

In addition to spherical nanoparticles, the researchers hope for even higher catalytic activity from significantly more complex shapes. And the computer models established in the partnership are ideal for this kind of modelling. "Nevertheless, more complex shapes require more complex synthesis methods," says Bandarenka. This will make computational and experimental studies more and more important in the future.

Publication:

Optimizing the Size of Platinum Nanoparticles for Enhanced Mass Activity in the Electrochemical Oxygen Reduction Reaction

Batyr Garlyyev, Kathrin Kratzl, Marlon Rück, Jan Michalicka, Johannes Fichtner, Jan M. Macak, Tim Kratky, Sebastian Günther, Mirza Cokoja, Aliaksandr S. Bandarenka, Alessio Gagliardi and Roland A. Fischer

Angewandte Chemie May 3, 2019 - DOI: 10.1002/anie.20190492

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201904492

Further information:

The work was supported by the German Research Foundation (DFG) as part of the International Graduate School of Science and Engineering of the Technical University of Munich (TUM), the Czech Republic's Ministry for Youth, Education and Sports and the Central European Institute of Technology (CEITEC) in Brno (Czech Republic).

Related press release about profitability of power-to-gas concepts:

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35259/

Press releases related to Catalyst research:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/32999/

https://www.tum.de/nc/en/about-tum/news/press-releases/details/32646/

High resolution images:

https://mediatum.ub.tum.de/1509771

Contacts:

Prof. Dr. Roland A. Fischer

Director of the Catalysis Research Center (CRC)

Chair for Inorganic and Organometallic Chemistry

Technical University of Munich (TUM)

Ernst-Otto-Fischer-Straße 1, 85748 Garching,

Tel.: +" 89 289 13080 - E-mail: roland.fischer@tum.de

Web: https://www.department.ch.tum.de/amc/home/

Prof. Dr. Aliaksandr S. Bandarenka

Physics of Energy Conversion and Storage

Technical University of Munich (TUM)

James-Franck-Straße 1, 85748 Garching

Tel.: +" 89 289 12531 - E-mail: bandarenka@ph.tum.de

Web: https://www.groups.ph.tum.de/energy/ecs/

The Technical University of Munich (TUM) is one of Europe's leading research
universities, with around 550 professors, 41,000 students, and 10,000 academic
and non-academic staff. Its focus areas are the engineering sciences, natural
sciences, life sciences and medicine, combined with economic and social
sciences. TUM acts as an entrepreneurial university that promotes talents and
creates value for society. In that it profits from having strong partners in
science and industry. It is represented worldwide with the TUM Asia campus in
Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco,
and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von
Linde, and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won
recognition as a German "Excellence University." In international rankings, TUM
regularly places among the best universities in Germany. www.tum.de
Weitere Storys: Technische Universität München
Weitere Storys: Technische Universität München
  • 25.06.2019 – 19:07

    TUM Presidential Entrepreneurship Award goes to Scintomics

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 22798 - email: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/35536/ NEWS RELEASE TUM Presidential Entrepreneurship Award goes to Scintomics Spin-off develops radio-pharmaceutical technologies for cancer diagnostics This year the Technical University of Munich (TUM) has ...

  • 14.06.2019 – 10:27

    Immortal quantum particles: a cycle of decay and rebirth

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 10516 - e-mail: presse@tum.de - Web: www.tum.de Dieser Text im Web: http://www.tum.de/nc/en/about-tum/news/press-releases/details/article/35492/ High resolution image: https://mediatum.ub.tum.de/1506313 NEWS RELEASE Immortal quantum particles Oscillating Quasiparticles: the cycle of decay and rebirth Decay is relentless in the macroscopic ...