Alle Storys
Folgen
Keine Story von Technische Universität München mehr verpassen.

Technische Universität München

Sternenkollision: 800 Milliarden Grad in der kosmischen Küche

TECHNISCHE UNIVERSITÄT MÜNCHEN

Corporate Communications Center

Tel.: +49 89 289 10516 - E-Mail: presse@tum.de - Web: www.tum.de

Dieser Text im Web:

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35653/

Hochauflösendes Bildmaterial: https://mediatum.ub.tum.de/1518458

PRESSEMITTEILUNG

800 Milliarden Grad in der kosmischen Küche

Experiment HADES simuliert die Kollision und das Verschmelzen von Sternen

Sie gehören zu den spektakulärsten Ereignissen im Universum: Kollisionen von Neutronensternen. Einem internationalen Forschungsteam mit maßgeblicher Beteiligung der Technischen Universität München (TUM) ist es erstmals gelungen, die bei einem solchen Zusammenstoß entstehende thermische elektromagnetische Strahlung im Labor zu messen - und so die Temperatur zu berechnen, die bei einer Sternenkollision herrscht.

Wenn zwei Neutronensterne zusammenstoßen, wird Kernmaterie in extreme Zustände versetzt. Ein internationales Forschungsteam ist den Eigenschaften der durch den Aufprall komprimierten Materie nun auf die Spur gekommen. Über 110 Wissenschaftlerinnen und Wissenschaftler haben seit 1994 am Langzeit-Experiment HADES kosmische Materieformen erforscht. Mit der Untersuchung der elektromagnetischen Strahlung, die bei der Kollision von Sternen entsteht, legte das Team nun den Blick auf die heiße und dichte Interaktionszone von zwei Neutronensternen frei.

Simulation der elektromagnetischen Strahlung

Direkt beobachten lässt sich eine Sternenkollision nicht - zumal es sich dabei um ein extrem seltenes Ereignis handelt, das Schätzungen zufolge in unserer Galaxie, der Milchstraße, noch nicht vorgekommen ist. Die Dichte und Temperatur bei Fusionsprozessen von Neutronensternen ähneln aber denen bei Schwerionenreaktionen. Damit konnte das HADES-Team im Schwerionenbeschleuniger des Helmholtzzentrums für Schwerionenforschung (GSI) in Darmstadt auf mikroskopischer Ebene die Bedingungen nachahmen, die bei einer Sternenkollision herrschen.

Wie beim Zusammenstoß von Neutronensternen entsteht beim Aufprall zweier Schwerionen, die sich beinahe mit Lichtgeschwindigkeit bewegen, elektromagnetische Strahlung. Sie besteht unter andrem aus sogenannten virtuellen Photonen, die nach einem kurzen Moment wieder in reelle Teilchen zerfallen. Bei Experimenten mit Schwerionen entstehen solche virtuellen Photonen allerdings äußerst selten. "Wir mussten etwa drei Milliarden Kollisionen aufzeichnen und analysieren, um schließlich 20.000 messbare virtuelle Photonen zu rekonstruieren", sagt Dr. Jürgen Friese, ehemaliger Sprecher der HADES-Kollaboration und Mitarbeiter von Laura Fabbietti, Professorin für Dichte und seltsame hadronische Materie an der TUM.

Photonen-Kamera zeigt Kollisionszone

Um die seltenen und kurzlebigen virtuellen Photonen aufzuspüren, haben Forscherinnen und Forscher der TUM eine spezielle eineinhalb Quadratmeter große Digitalkamera entwickelt. Sie zeichnet den sogenannten Cherenkov-Effekt auf: Bestimmte Lichtmuster, die von den Zerfallsprodukten der virtuellen Photonen erzeugt werden. "Leider ist das Licht, das von den virtuellen Photonen ausgeht, extrem schwach. Die Kunst bei unserem Experiment lag also darin, die Lichtmuster zu finden", sagt Friese. "Mit bloßem Auge würde man sie nicht erkennen können. Deshalb haben wir ein Verfahren zur Mustererkennung entwickelt, bei dem ein Foto aus 30.000 Pixeln in wenigen Mikrosekunden mit elektronischen Masken abgerastert wird. Ergänzend nutzen wir neuronale Netze und Künstliche Intelligenz."

Beobachten der Materie-Eigenschaften im Labor

Die Rekonstruktion der Wärmestrahlung von komprimierter Materie gilt als Meilenstein für das Verständnis kosmischer Materieform. Sie diente den Wissenschaftlerinnen und Wissenschaftlern als Grundlage dafür, die Temperatur des bei einer Sternenkollision entstehenden neuen Systems auf 800 Milliarden Grad Celsius festlegen zu können. Damit zeigte das HADES-Team, dass die untersuchten Fusionsvorgänge tatsächlich die kosmischen Küchen für das das Verschmelzen schwerer Kerne sind.

Publikation:

The HADES-Collaboration: Probing dense baryon-rich matter with virtual photons. In: Nature Physics (veröffentlicht am 29.7.2019). DOI: 10.1038/s41567-019-0583-8

https://doi.org/10.1038/s41567-019-0583-8

Mehr Informationen:

Das HADES-Projekt macht Messungen an sogenannten Seltsamen Teilchen möglich, die Hypothesen zufolge nur im Kern von Neutronensternen vorkommen. Mit dem Studium der Seltsamkeit ("strangeness") von Teilchen schafft Prof. Fabbiettis Team eine wichtige Grundlage für die Entwicklung realistischer Modelle von Neutronensternen.

Hochauflösende Bilder: https://mediatum.ub.tum.de/1518458

Kontakt:

Prof. Dr. Laura Fabbietti

Technische Universität München

Professur für Dichte und seltsame hadronische Materie

Tel.: +49 (0) 89 289-12433

laura.fabbietti@ph.tum.de

Dr. Jürgen Friese

Technische Universität München

Professur für Dichte und seltsame hadronische Materie

Tel.: +49 (0) 89 289-12441

juergen.friese@ph.tum.de


Die Technische Universität München (TUM) ist mit rund 550 Professorinnen und
Professoren, 41.000 Studierenden sowie 10.000 Mitarbeiterinnen und Mitarbeitern
eine der forschungsstärksten Technischen Universitäten Europas. Ihre
Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften,
Lebenswissenschaften und Medizin, verknüpft mit den Wirtschafts- und
Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die
Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie
von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit dem
Campus TUM Asia in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai,
Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger
und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht.
2006, 2012 und 2019 wurde sie als Exzellenzuniversität ausgezeichnet. In
internationalen Rankings gehört sie regelmäßig zu den besten Universitäten
Deutschlands.
Weitere Storys: Technische Universität München
Weitere Storys: Technische Universität München
  • 20.08.2019 – 11:48

    Sternenstaub im antarktischen Schnee liefert Hinweise auf die Umgebung des Sonnensystems

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 10516 - E-Mail: presse@tum.de - Web: www.tum.de Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35652/ Hochauflösendes Bildmaterial: https://mediatum.ub.tum.de/1518357 PRESSEMITTEILUNG Sternenstaub im antarktischen Schnee Eisen-60-Fund in der ...

  • 09.08.2019 – 10:45

    Arbeitnehmer werden lieber durch Roboter ersetzt als durch Kollegen

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 22798 - E-Mail: presse@tum.de - Web: www.tum.de Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35645/ PRESSEMITTEILUNG Arbeitnehmer werden lieber durch Roboter ersetzt als durch Kollegen Studie zeigt psychologische Wirkung von Arbeitsplatzverlust durch Technologie Die meisten Menschen finden es ...

  • 09.08.2019 – 10:27

    For the first time cause of early cellular dysfunction in Alzheimer's disease recognized

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 23325 - email: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/35644/ High resolution images: https://mediatum.ub.tum.de/1516971 NEWS RELEASE Cause of early cellular dysfunction in Alzheimer's disease recognized for the ...