Technische Universität München
So entstehen Stein-Eisen Meteoriten - Hochdruckpresse SAPHiR löst Rätsel des Sonnensystems
TECHNISCHE UNIVERSITÄT MÜNCHEN
Corporate Communications Center
Tel.: +49 89 289 10510 - E-Mail: presse@tum.de
Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/36180/
Bildmaterial mit hoher Auflösung: https://mediatum.ub.tum.de/1554164
PRESSEMITTEILUNG
So entstehen Stein-Eisen Meteoriten
Hochdruckpresse SAPHiR löst Rätsel des Sonnensystems
Meteoriten ermöglichen uns Einblicke in die frühe Entwicklung des Sonnensystems. Mithilfe des Instruments SAPHiR der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM) ist es einem Wissenschaftsteam erstmals gelungen, die Entstehung von Stein-Eisen Meteoriten, sogenannten Pallasiten, vollständig experimentell zu simulieren.
"Pallasite sind die optisch schönsten und ungewöhnlichsten Meteoriten", zeigt sich Dr. Nicolas Walte, der Erstautor der Studie, begeistert. Sie gehören zur Gruppe der Stein-Eisen Meteoriten und bestehen aus grünen Olivinkristallen, eingebettet in Nickel und Eisen. Trotz jahrzehntelanger Forschung war ihre genaue Herkunft jedoch bisher umstritten.
Um diese Frage zu klären, untersuchte Dr. Nicolas Walte, Instrumentenwissenschaftler am Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, gemeinsam mit Kolleginnen und Kollegen des Bayerischen Geoinstituts der Uni Bayreuth sowie der Royal Holloway University of London den Bildungsprozess von Pallasiten. Erstmalig gelang es ihnen dabei, Strukturen aller Pallasitarten experimentell herzustellen.
Instrument SAPHiR im Einsatz
Für seine Experimente nutzte das Team die Hochdruckpresse SAPHiR, die derzeit unter der Leitung von Prof. Hans Keppler vom Bayerischen Geoinstitut am MLZ aufgebaut wird und die baugleiche MAVO Presse der Universität Bayreuth. Noch erhält SAPHiR zwar keine Neutronen vom FRM II, es ist jedoch bereits möglich, Experimente unter hohem Druck und hoher Temperatur durchzuführen.
"Mit einer Presskraft von 2400 Tonnen kann SAPHiR eine Probe auf einen Druck von 15 Gigapascal (GPa) und auf Temperaturen über 2000 °C bringen", erläutert Walte. "Das ist mehr als das Doppelte des Drucks der benötigt wird, um Graphit in Diamant zu verwandeln." Um die Kollision zweier Himmelskörper zu simulieren, reichte dem Forschungsteam allerdings schon ein Druck von einem GPa bei 1300°C.
Wie entstehen Pallasite?
Bis vor kurzem glaubte man, dass Pallasite aus der Grenze zwischen Eisenkern und Gesteinsmantel von Asteroiden stammen. Einer neueren Theorie zufolge entstehen Pallasite näher an der Oberfläche bei der Kollision mit einem anderen Himmelskörper. Bei dem Einschlag vermischt sich geschmolzenes Eisen aus dem Kern des Projektils mit dem olivinreichen Mantel des Mutterkörpers.
Die durchgeführten Experimente bestätigten jetzt die Einschlagshypothese. Eine weitere Voraussetzung für die Bildung von Pallasiten ist, dass sich Eisenkern und Gesteinsmantel des Asteroiden zuvor teilweise getrennt haben müssen.
Dies geschah kurz nach seiner Entstehung vor etwa 4,5 Milliarden Jahren. In dieser Zeit heizte sich der Asteroid auf, bis die dichteren metallischen Bestandteile aufschmolzen und zum Zentrum des Himmelskörpers absanken.
Die entscheidende Erkenntnis der Studie ist, dass beide Prozesse, die Trennung von Kern und Mantel und der darauf folgende Einschlag eines weiteren Himmelskörpers, für die Entstehung von Pallasiten nötig sind.
Erkenntnisse über die Entstehung des Sonnensystems
"Allgemein sind Meteoriten die ältesten direkt zugänglichen Bestandteile des Sonnensystems. Das Alter des Sonnensystems und seine frühe Entstehungsgeschichte kennt man hauptsächlich durch die Untersuchung von Meteoriten", erklärt Walte.
"Erde und Mond entwickelten, genau wie viele Asteroiden, mehrere Lagen, aus Kern, Mantel und Kruste", sagt Nicolas Walte. "So schufen die Zusammenballungen von kosmischem Geröll komplexe Welten. Im Fall der Erde hat dies letztendlich die Entstehung von Leben ermöglicht."
Die Hochdruck-Experimente und der Vergleich mit Pallasiten zeigen wichtige, im frühen Sonnensystem ablaufende Prozesse. Die Experimente des Teams liefern neue Erkenntnisse über die Kollision und die Materialvermischung der beiden Himmelskörper und die darauffolgende schnelle gemeinsame Abkühlung. In zukünftigen Untersuchungen soll dies nun weiter erforscht werden.
Publikation:
Two-stage formation of pallasites and the evolution of their parent bodies revealed by deformation experiments
Nicolas P. Walte, Giulio F. D. Solferino, Gregor J. Golabek, Danielle Silva Souza, Audrey Bouvier
Earth and Planetary Science Letters, Vol. 546, 15 September 2020, 116419 - DOI: 10.1016/j.epsl.2020.116419
https://www.sciencedirect.com/science/article/abs/pii/S0012821X20303630
Mehr Informationen:
Die Forschungsarbeiten wurden mit Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) unterstützt.
Bilder mit hoher Auflösung:
https://mediatum.ub.tum.de/1554164
Kontakt:
Dr. Nicolas P. Walte
Technische Universität München
Forschung-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
Instrument SAPHiR
Lichtenbergstr. 1, 85748 Garching
Tel.: +49 89 289 11772 - E-Mail: nicolas.walte@frm2.tum.de
Web: https://mlz-garching.de/saphir/de
Das Heinz Maier-Leibnitz Zentrum (MLZ) in Garching bei München ist ein führendes Zentrum für Spitzenforschung mit Neutronen und Positronen. Als Serviceeinrichtung für Nutzer verfügt das MLZ über eine einzigartige, leistungsfähige Instrumentierung im Bereich der Neutronenforschung. Das MLZ ist eine Kooperation der Technischen Universität München, des Forschungszentrums Jülich und des Helmholtz-Zentrums Geesthacht. Es wird gemeinsam finanziert durch das Bundesministerium für Bildung und Forschung, das Bayerische Staatsministerium für Wissenschaft und Kunst sowie Partner der Kooperation. Die Technische Universität München (TUM) ist mit rund 600 Professorinnen und Professoren, 43.000 Studierenden sowie 10.000 Mitarbeiterinnen und Mitarbeitern eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit den Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit dem Campus TUM Asia in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006, 2012 und 2019 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. www.tum.de