Alle Storys
Folgen
Keine Story von Technische Universität München mehr verpassen.

Technische Universität München

New X-ray technology: Dark-field X-ray technology improves diagnosis of pulmonary ailments

TECHNICAL UNIVERSITY OF MUNICH

Corporate Communications Center

Phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de

This text on the web: https://www.tum.de/en/about-tum/news/press-releases/details/36892

High resolution images: https://mediatum.ub.tum.de/1621886

NEWS RELEASE

New X-ray technology first used with patients

Dark-field X-ray technology improves diagnosis of pulmonary ailments

For the first time, researchers at the Technical University of Munich (TUM) have successfully used a new X-ray method for respiratory diagnostics with patients. Dark-field X-rays visualize early changes in the alveolar structure caused by the lung disease COPD and require only one fiftieth of the radiation dose typically applied in X-ray computed tomography. This permits broad medical application in early detection and treatment follow-up of respiratory ailments.

There are millions of cases in which serious respiratory system illnesses place limitations on quality of life. Every year more than four million people die of serious respiratory ailments worldwide. Partially destroyed alveoli and an over-inflation of the lungs (emphysema) are typical of the life-threatening ailment Chronic Obstructive Pulmonary Disease (COPD).

However, the fine distinctions between healthy and diseased tissue are barely visible on conventional chest X-rays. Detailed diagnostic information is only available using three-dimensional computed tomography approaches, in which the computer assembles many individual images. Until now there has been no fast and cost-effective option for early detection and follow-up examinations with a low radiation exposure as used in plain chest X-rays.

A procedure developed at the Technical University of Munich could now fill this gap: dark-field chest X-rays. In the current issue of "Lancet Digital Health" a research team led by Franz Pfeiffer, Professor for Biomedical Physics and Director of the Munich Institute of Biomedical Engineering at TUM, is now presenting the results of an initial clinical patient study, which used the new X-ray technology for the diagnosis of the lung disease COPD.

The key: The wave character of X-rays

Conventional X-ray imaging is based on the attenuation of X-rays on their way through the tissue. Dark-field technology on the other hand use the wave nature of X-ray light, which is discarded in conventional X-ray imaging.

The new method thus uses the physical phenomenon of scattering in a manner similar to the long-known principle of dark-field microscopy with visible light. This allows to visualize the structure of objects that are for the most part transparent. These structures appear in the microscope as bright images on a dark background, which has given the method its name.

"The X-ray dark-field signal is particularly strong for interfaces between air and tissue," Pfeiffer points out. "This makes it possible for a dark-field X-ray image of the lung to clearly distinguish between intact alveoli, i.e. those filled with air, and regions in which less intact alveoli exist."

Lower radiation dose

In addition, an examination using dark-field chest X-ray technology involves a significantly lower radiation dose than presently used computed tomography. This is because dark-field chest X-rays require only one exposure per patient, as compared to the large number of individual images taken from different directions which are necessary in computed tomography.

"We expect the radiation exposure to be reduced by a factor of fifty," says Franz Pfeiffer. Furthermore, the first clinical results have confirmed that the dark-field X-rays provide additional image information on the underlying microstructure of the lung.

"Given the close connection between the alveolar structure and the functional condition of the lung, this ability is of great significance for pulmonary medicine," explains Dr. Alexander Fingerle, senior physician at TUM’s university hospital Klinikum rechts der Isar's Department of Diagnostic and Interventional Radiology. "In the future dark-field X-rays could help improve early detection of COPD and other respiratory ailments."

Better X-ray equipment for early detection in the future

Franz Pfeiffer hopes these initial clinical results with patients will accelerate the execution of further clinical studies and the development of marketable devices that use the dark-field method.

"Dark-field chest X-rays are currently giving us a chance to significantly improve the early detection of lung diseases and at the same time to implement it on a wider basis than before," Pfeiffer points out.

Since dark-field imaging is not limited to COPD, further translational studies with other pulmonary pathologies such as pulmonary fibrosis, pneumothorax, lung cancer and pneumonia, including COVID-19, are of great interest.

Publication:

Konstantin Willer, Alexander Fingerle, Wolfgang Noichl, Fabio De Marco, Manuela Frank, Theresa Urban, Rafael Schick, Alex Gustschin, Bernhard Gleich, Julia Herzen, Thomas Koehler, Andre Yaroshenko, Thomas Pralow, Gregor Zimmermann, Bernhard Renger, Andreas Sauter, Daniela Pfeiffer, Marcus Makowski, Ernst Rummeny, Philippe Grenier, Franz Pfeiffer

X-ray dark-field chest imaging for detection and quantification of emphysema in patients with chronic obstructive pulmonary disease: a diagnostic accuracy study

Lancet Digital Health, Volume 3, ISSUE 11, e733-e744, November 01, 2021 – DOI: 10.1016/S2589-7500(21)00146-1

Link: https://www.thelancet.com/journals/landig/article/PIIS2589-7500(21)00146-1/

More information:

The research was supported by the European Research Council as part of an Advanced Grant, the German Research Foundation (DFG) and by Philips Medical Systems DMC GmbH. Co-author Thomas Köhler (Philips) was Rudolf Diesel Industry Fellow at the TUM Institute for Advanced Study (TUM IAS), which itself is funded in part by the Excellence Initiative of the German federal and state governments and by the EU's Marie Curie COFUND program. Some of the research was conducted in collaboration with the Karlsruhe Nano Micro Facility (KNMF), a Helmholtz research infrastructure at the Karlsruhe Institute of Technology (KIT).

High resolution images:

https://mediatum.ub.tum.de/1621886

Contact:

Prof. Dr. Franz Pfeiffer

Professor for Biomedical Physics

Department of Physics / Munich Institute of Biomedical Engineering (MIBE)

James-Franck-Str. 1, 85748 Garching, Germany

Tel.: +49 89 289 12551 – +49 89 289 12552 (Sekr.)

E-mail: franz.pfeiffer@tum.de

Web: https://www.groups.ph.tum.de/e17/https://www.bioengineering.tum.de

The Technical University of Munich (TUM) is one of Europe’s leading research universities, with more than 600 professors, 48,000 students, and 11,000 academic and non-academic staff. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, combined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with the TUM Asia campus in Singapore as well as offices in Beijing, Brussels, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006, 2012, and 2019 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany.

Weitere Storys: Technische Universität München
Weitere Storys: Technische Universität München
  • 20.10.2021 – 16:13

    Neutrons detect hidden defects in 3D printed components

    TECHNICAL UNIVERSITY OF MUNICHCorporate Communications Center Phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/en/about-tum/news/press-releases/details/37002 High resolution images: https://mediatum.ub.tum.de/1632328 NEWS RELEASE Test procedures under scrutiny Comparatively, neutrons detect most defects in 3D printed components In the manufacture of turbines ...

  • 15.10.2021 – 16:28

    TUM grows to 48,000 students

    TECHNICAL UNIVERSITY OF MUNICHCorporate Communications Center phone: +49 89 289 22798 - email: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/en/about-tum/news/press-releases/details/36996 NEWS RELEASE TUM grows to 48,000 students International enrollments at new all-time high The Technical University of Munich (TUM) continues to attract talented people from all over the world. As in the previous year, around 14,000 new students have enrolled in ...

  • 13.10.2021 – 14:04

    TUM among the top 50 in four subject areas

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 22798 - email: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/en/about-tum/news/press-releases/details/36960 NEWS RELEASE TUM among the top 50 in four subject areas Latest THE World University Rankings by Subject published The Technical University of Munich (TUM) again ranks among the 50 best universities in the ...