Alle Storys
Folgen
Keine Story von Technische Universität München mehr verpassen.

Technische Universität München

Neutrons detect clogs in pipelines – new neutron-based method helps keep underwater pipelines open

TECHNICAL UNIVERSITY OF MUNICHCorporate Communications Center

Phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de

This text on the web: https://www.tum.de/en/about-tum/news/press-releases/details/37150

High resolution images: https://mediatum.ub.tum.de/1639758

NEWS RELEASE

Neutrons detect clogs in pipelines

New neutron-based method helps keep underwater pipelines open

Industry and private consumers alike depend on oil and gas pipelines that stretch thousands of kilometers underwater. It is not uncommon for these pipelines to become clogged with deposits. Until now, there have been few means of identifying the formation of plugs in-situ and non-destructively. Measurements at the Research Neutron Source Heinz Maier-Leibnitz (FRM II) at the Technical University of Munich (TUM) now show that neutrons may provide the solution of choice.

Oil and gas pipelines are the arteries of our energy supply. As with the Nord Stream pipelines, they transport the sources of energy over long distances underwater to storage and production facilities on land.

But it's not just supply bottlenecks, as we have them now, that can lead to shortages. Under certain conditions, the mixture in the pipelines – which typically comprises gas, oil, and water – can become very viscous and even form solid phases.

Especially inconvenient for operators are solid hydrates that form from gas and water, for example when the mixture cools down to the low temperatures of the seabed during longer pipeline shutdowns.

Previous approaches do not work underwater

For a clog to be remediated in-situ, the affected section of the pipeline must first be found. Localizing clogs from the outside is challenging, since they can form anywhere along the length of the pipeline.

To date, thermal imaging cameras and gamma rays are used to detect the clogs. However, neither of these methods works underwater. Ultrasound, on the other hand, has no problem penetrating water, but the hydrate blocks can only be detected at close range from outside the pipeline wall.

This constraint poses practical difficulties because underwater pipelines are laid at depths of up to 2000 meters and are often naturally covered by seabed materials like sand or silt. Another technical challenge associated with acoustic methods arises from the lack of a clear difference between the acoustic impedances of the hydrate phase and other phases of the crude oil mixture, which makes discrimination difficult.

Neutrons – the perfect probe

TechnipFMC, a company with around 20,000 employees worldwide that specializes in subsea pipelines, was "looking for a more efficient method to find the plugs in a non-contact, non-destructive and reliable way despite thick walls," says Dr. Xavier Sebastian, a project manager at the company.

As suggested by Dr. Sophie Bouat, CEO of Science-S.A.V.E.D. (Scientific Analysis Vitalises Enterprise Development), "neutrons are the perfect probe for the task at hand.” She established the contact to the scientists at the Heinz Maier-Leibnitz Zentrum in Garching near Munich.

"Using prompt gamma neutron activation analysis, light atoms and hydrogen in particular can be detected very precisely," she continues. Since the hydrogen content of hydrates and normal oil or gas is considerably different, it should be possible to detect blockages by measuring the hydrogen concentration.

Feasibility study at FRM II

Dr. Ralph Gilles industry coordinator at the Research Neutron Source FRM II carried out a feasibility study on this topic together with other colleagues from the Technical University of Munich and the Forschungszentrum Jülich. Using the PGAA (Prompt Gamma Activation Analysis) instrument, which utilizes cold neutrons from FRM II, the researchers established that this approach can be used to differentiate between oil and gas and the blockage.

At the NECTAR radiography and tomography facility and the FaNGAS (fast neutron-induced gamma ray spectroscopy) instrument they used fast neutrons from FRM II to show that a sufficiently large number of neutrons penetrate the metal walls of the pipelines to facilitate the respective measurement, and that the measurement also works well underwater.

A small neutron source detects plugs

The results clearly demonstrate that neutrons are ideally suited for this application. Moreover, "our experiments have shown that we can even distinguish an incipient blockage from a fully developed one," says Dr. Ralph Gilles. "That's very beneficial, because then one can even preventatively heat a pipe segment to melt the blockage before it fully develops."

In practice, a mobile detector with a small neutron source will move back and forth along the pipeline to look for plugs. "We are very pleased that, with the help of the measurements at the research neutron source, we have now found an efficient method that makes it much easier to detect these plugs in the future," says Dr. Xavier Sebastian.

Publication:

Sophie Bouat, Ludovic Pinier, Xavier Sebastian, Adrian Losko, Rudolf Schütz, Michael Schulz, Zsolt Revay, Zeljko Ilic, Eric Mauerhofer, Thomas Brückel & Ralph Gilles

Detection of hydrate plugs inside submarine pipelines using neutrons

Nondestructive Testing and Evaluation, Oct 25, 2021 – DOI: 10.1080/10589759.2021.1990284

https://www.tandfonline.com/doi/full/10.1080/10589759.2021.1990284

More information:

Besides scientists of the Technical University of Munich, researchers of Forschungszentrum Jülich and RWTH Aachen University contributed to the analysis. The contact to the company TechnipFMC was mediated through the company Science-S.A.V.E.D. (Scientific Analysis Vitalises Enterprise Development). Access for beam time was paid by TechnipFMC.

Instruments used for this research:

PGAA: https://mlz-garching.de/pgaa

FANGAS: https://mlz-garching.de/fangas

NECTAR: https://mlz-garching.de/medapp-nectar

High resolution images:

https://mediatum.ub.tum.de/1639758

Contact:

Dr. habil. Ralph Gilles

Industry coordinator

Research Neutron Source Heinz Maier-Leibnitz (FRM II)

Technical University of Munich

Lichtenbergstr. 1, 85748 Garching, Germany

Phone: +49 089 / 289-14665 – E-mail: ralph.gilles@frm2.tum.de

Research Neutron Source Heinz Maier-Leibnitz (FRM II) https://www.frm2.tum.de/en/

Heinz Maier-Leibnitz Zentrum (MLZ) https://mlz-garching.de/english.html

The Heinz Maier-Leibnitz Zentrum (MLZ) is a leading center for cutting-edge research with neutrons and positrons. Operating as a user facility, the MLZ offers a unique suite of high-performance neutron scattering instruments. This cooperation involves the Technical University of Munich, the Forschungszentrum Jülich and the Helmholtz-Zentrum Hereon. The MLZ is funded by the German Federal Ministry of Education and Research, together with the Bavarian State Ministry of Science and the Arts and the partners of the cooperation. https://mlz-garching.de/englisch.html

The Technical University of Munich (TUM) is one of Europe’s leading research universities, with more than 600 professors, 48,000 students, and 11,000 academic and non-academic staff. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, combined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with the TUM Asia campus in Singapore as well as offices in Beijing, Brussels, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006, 2012, and 2019 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany. www.tum.de

Weitere Storys: Technische Universität München
Weitere Storys: Technische Universität München
  • 10.01.2022 – 08:29

    "Formula 1 could see driverless race cars as early as 2025"

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center Phone: +49 89 289 25439 – email: presse@tum.de – web: www.tum.de This text on the web: https://www.tum.de/en/about-tum/news/press-releases/details/37131 High resolution images: https://mediatum.ub.tum.de/1638696 NEWS RELEASE Interview with Prof. Markus Lienkamp on autonomous motor sports "Formula 1 could see driverless race cars as early as 2025" A team ...

  • 08.01.2022 – 13:13

    TUM Is Vice-World Champion in Autonomous Racing

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center Phone: +49 89 289 25439 – email: presse@tum.de – web: www.tum.de This text on the web: https://www.tum.de/en/about-tum/news/press-releases/details/37132 High resolution images: https://mediatum.ub.tum.de/1638696 NEWS RELEASE Autonomous Challenge @ CES in Las Vegas: TUM Is Vice-World Champion in Autonomous Racing The team from the Technical University of ...