Alle Storys
Folgen
Keine Story von Technische Universität München mehr verpassen.

Technische Universität München

P-ONE: a new, large-scale Neutrino Observatory in the Pacific Ocean

TECHNICAL UNIVERSITY OF MUNICH

Corporate Communications Center

phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de

This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/36220/

High resolution images: https://mediatum.ub.tum.de/1574295

NEWS RELEASE

Revealing the secrets of high-energy cosmic particles

P-ONE: Initiative for a new, large-scale Neutrino Observatory in the Pacific Ocean

The "IceCube" neutrino observatory deep in the ice of the South Pole has already brought spectacular new insights into cosmic incidents of extremely high energies. In order to investigate the cosmic origins of elementary particles with even higher energies, Prof. Elisa Resconi from the Technical University of Munich (TUM) has now started an international initiative to build a neutrino telescope several cubic kilometers in size in the northeastern Pacific.

Astronomers observe the light that comes to us from distant celestial objects to explore the Universe. However, light does not tell us much about the highest energy events beyond our Galaxy, such as the jets of active galactic nuclei, gamma-ray bursts or supernovae, because photons in the upper gamma-ray range lose their extreme energies on their long way through the Universe through interaction with other particles.

Just like light, neutrinos traverse space at the speed of light (almost) but interact extremely rarely with other particles. They maintain their energy and direction, which makes them unique messengers of the highest energy universe.

Messenger of distant cosmic events

Since 2013, when the IceCube Neutrino Observatory detected extragalactic neutrinos for the first time, astrophysicists have been striving to understand from which cosmic sources they come and which physical mechanism has accelerated them to such extreme energies.

However, to solve the puzzle, more detectors with even larger volumes than that of the cubic-kilometre sized IceCube Observatory are required. Because neutrinos cannot be observed directly, only through Cherenkov radiation, the detectors must be located in ice or in water.

Initiative for a new neutrino telescope in the Pacific

Prof. Elisa Resconi, spokesperson of the Collaborative Research Center 1258 and Liesel-Beckmann Chair for Experimental Physics with Cosmic Particles at TUM, has now started an international initiative for a new neutrino telescope located in the Pacific Ocean off the coast of Canada: the Pacific Ocean Neutrino Experiment (P-ONE).

For that purpose, Resconi has partnered with a facility of the University of Victoria, Ocean Networks Canada (ONC), one of the world's largest and most advanced cabled ocean observatories.

Ideal conditions for a neutrino observatory

The ONC network node in the Cascadia basin at a depth of 2660 meters was selected for P-ONE. The extensive abyssal plain offers ideal conditions for a neutrino observatory spanning several cubic kilometres.

In summer 2018, ONC anchored a first pathfinder experiment in the Cascadia basin: the STRAW (Strings for Absorption length in water) experiment, two 140-meter-long strings equipped with light emitters and sensors to determine the attenuation of light in the ocean water, a parameter crucial for the design of P-ONE. In September 2020, STRAW-b will be installed, a 500 m steel cable with additional detectors. Both experiments were developed and built by Resconi's research group at the TUM Physics Department.

Next steps in 2023/24

The first segment of P-ONE, the Pacific Ocean Neutrino Explorer, a ring with seven 1000-meter-long strings with 20 detectors each, is planned to be installed in ONC's marine operation season in 2023/24 in collaboration with various Canadian universities.

"Astrophysical neutrinos have unlocked new potential for significantly advancing our knowledge of the extreme universe," says Darren Grant, professor at the Michigan State University (USA), and spokesperson of the IceCube collaboration. "P-ONE represents a unique opportunity to demonstrate large-scale neutrino detector deployment in the deep ocean, a critical step towards reaching the goal of a globally connected neutrino observatory that would provide peak all-sky sensitivity to these ideal cosmic messengers."

Elisa Resconi anticipates P-ONE with its seven segments to be completed by the end of the decade. "The experiment will then be perfectly equipped to uncover the provenance of the extragalactic neutrinos," says Resconi, "but what's more, high-energy neutrinos also hold the potential to reveal the nature of dark matter."

Publication:

M. Agostini et al.: The Pacific Ocean Neutrino Experiment

Nature Astronomy, Sept. 8, 2020 - DOI: 10.1038/s41550-020-1182-4

https://www.nature.com/articles/s41550-020-1182-4

More information:

The P-ONE project includes the Technical University of Munich (Germany), University of Victoria and Ocean Networks Canada, University of Alberta, Queen's University, Simon Fraser University (all Canada), Michigan State University (USA), European Southern Observatory, Goethe University Frankfurt, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, and Max Planck Institute for Physics (all Germany).

The project receives support from Ocean Networks Canada, an initiative of the University of Victoria funded in part by the Canada Foundation for Innovation. This work is funded by the German Research Foundation (DFG) through grant SFB 1258 "Neutrinos and Dark Matter in Astro- and Particle Physics" and the cluster of excellence "Origin and Structure of the Universe".

A special feature of the modules: They contain works of art by young international artists who create a connection between the earth and the deep sea and thus turn the pathfinder experiment into a unique underwater exhibition.

Earlier press releases about Prof. Resconi's neutrino research:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/34815/

https://www.tum.de/nc/en/about-tum/news/press-releases/details/34228/

https://www.tum.de/nc/en/about-tum/news/press-releases/details/31199/

High resolution images:

https://mediatum.ub.tum.de/1574295

Contact:

Prof. Dr. Elisa Resconi

Liesel Beckmann Professor for Experimental Physics with cosmic Particles

Technical University of Munich

James-Franck-Straße 1, 85748 Garching, Germany

E-Mail: elisa.resconi@tum.de - Tel.: +49 89 289 12442

http://www.pacific-neutrino.org/

https://www.groups.ph.tum.de/cosmic-particles/experimental-physics-with-cosmic-particles/

The Technical University of Munich (TUM) is one of Europe's leading research universities, with around 600 professors, 43,000 students, and 10,000 academic and non-academic staff. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, combined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with the TUM Asia campus in Singapore as well as offices in Beijing, Brussels, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006, 2012, and 2019 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany. www.tum.de

Weitere Storys: Technische Universität München
Weitere Storys: Technische Universität München
  • 02.09.2020 – 14:13

    Finding cortisone alternatives with fewer side effects

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 8161 5403 - email: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/36207/ Images for journalists: https://mediatum.ub.tum.de/1559845 NEWS RELEASE DNA binding is essential for effectiveness of steroids Finding cortisone alternatives with fewer side effects Many people use ...

  • 27.08.2020 – 17:05

    Professor Alena Buyx on the embedded ethics approach in AI development

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center e-mail: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/36211/ High resolution images:https://mediatum.ub.tum.de/1555330 NEWS RELEASE "Ethics must be part of the development process" Professor Alena Buyx on the embedded ethics approach in ...

  • 17.08.2020 – 11:26

    Designed bacteria produce coral-antibiotic

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center e-mail: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/36204/ High resolution images: https://mediatum.ub.tum.de/1554685 NEWS RELEASE Sustainable biotechnological production of a natural substance against tuberculosis Designed bacteria produce coral-antibiotic Corals growing on the reefs of ...