Technische Universität München
Revolution in der Bildgebung mit Neutronen - geringere Strahlenbelastung bei Röntgenaufnahmen
TECHNISCHE UNIVERSITÄT MÜNCHENCorporate Communications Center
Tel.: +49 89 289 10510 - E-Mail: presse@tum.de
Dieser Text im Web: https://www.tum.de/die-tum/aktuelles/pressemitteilungen/details/37037
Bildmaterial mit hoher Auflösung: https://mediatum.ub.tum.de/1633959
PRESSEMITTEILUNG
Revolution in der Bildgebung mit Neutronen
Einzelmessungen eliminieren das Rauschen in Fotodetektoren
Ein internationales Forschungsteam hat an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM) eine neue Technik für bildgebende Verfahren entwickelt. Es wird in Zukunft nicht nur um ein Vielfaches besser aufgelöste Messungen mit Neutronen ermöglichen, sondern könnte auch die Strahlenbelastung bei Röntgenaufnahmen verringern.
Auch moderne Kameras setzen immer noch auf das gleiche Prinzip wie vor 200 Jahren: Statt eines Films wird heute ein Bildsensor für eine bestimmte Zeit belichtet, um ein Bild aufzunehmen. Allerdings wird dabei auch das Rauschen des Sensors mit aufgezeichnet. Bei längeren Belichtungszeiten stellt das eine erhebliche Störungsquelle dar.
Gemeinsam mit Kolleginnen und Kollegen aus der Schweiz, Frankreich, den Niederlanden und den USA haben Dr. Adrian Losko sowie weitere Kolleginnen und Kollegen der TUM am Heinz Maier-Leibnitz Zentrum (MLZ) nun ein neues bildgebendes Verfahren entwickelt, das einzelne Photonen zeit- und ortsaufgelöst misst. Photonen können damit vom Rauschen getrennt werden, und das störende Rauschen lässt sich so stark reduzieren.
„Mit unserem neuen Detektor weisen wir jedes einzelne Lichtteilchen nach und umgehen dadurch viele physikalische Grenzen klassischer Kameras“, sagt Dr. Adrian Losko, Instrumentwissenschaftler an der Neutronenradiographieanlage NECTAR des MLZ an der TU München.
Messung einzelner Lichtteilchen
Typischerweise setzen die Forscherinnen und Forscher in der Neutronen-Radiographie bei ihren Messungen Szintillatoren ein, um Neutronen zu detektieren und so zum Beispiel versteinerte Dinosaurereier zu durchleuchten. Wird ein Neutron vom Szintillator-Material absorbiert, werden Photonen erzeugt, Lichtteilchen, die gemessen werden können.
Bei allen bisherigen Kameras wird das Licht während der gesamten Belichtungszeit gesammelt, dadurch entsteht, abhängig von der Dicke des Szintillators, eine Unschärfe. Das neue Konzept des Forschungsteams hingegen weist jedes einzelne der Lichtteilchen nach, das durch ein Neutron erzeugt wurde.
„Voraussetzung dafür war eine neue Chiptechnologie sowie Hard- und Software mit Rechengeschwindigkeiten, die eine Auswertung in Echtzeit ermöglichen. So können wir jetzt Neutron für Neutron ein Bild zusammensetzen“, erklärt Losko. Die Neutronenforschung bietet hier ein ideales Test- und Anwendungsgebiet.
Statt langer Belichtungszeit exakt messen, was passiert
Da die Absorption eines Neutrons im Detektor mehrere Lichtteilchen erzeugt, kann das neue System durch eine Koinzidenzmessung mehrerer Lichtteilchen einzelne Neutronen nachweisen. „Damit kommen wir weg vom klassischen Modell der Belichtungszeit und messen nur die Ereignisse, die stattgefunden haben.“
Insgesamt stellt das neue Konzept alle bisher auf dem Markt existierenden Technologien in den Schatten, denn es ermöglicht jetzt schon eine dreimal bessere örtliche Auflösung und ein mehr als siebenmal geringeres Rauschen. „Die Limitierung durch die Dicke des Szintillators ist stark reduziert. Dies ermöglicht eine höhere Effizienz für hochauflösende Messungen“, so Losko. Auch das Nachleuchten von Szintillatoren, das ein sogenanntes Ghost-Image erzeugt, fällt weg.
„Viele Instrumente an der Forschungs-Neutronenquelle könnten von unserem neuen Konzept profitieren“, so Losko. Als Beispiel nennt er das Instrument FaNGaS (Fast Neutron-induced Gamma-ray Spectrometry): „Dadurch, dass wir genau wissen, wann ein Neutron ankommt, kann der Zeitbereich, in dem wir das Gamma-Teilchen messen, auf eine millionstel Sekunde verringert werden.“ Das würde das Untergrund-Rauschen um den Faktor einer Million reduzieren.
Geringere Strahlenbelastung und mehr Details beim Röntgen
Auch in der Medizin könnte der neue Detektor zum Einsatz kommen. Bei der Röntgen-Aufnahme eines Knochenbruchs würden feine Strukturen, wie Knochen-Haarrisse, besser erkennbar und gleichzeitig die Strahlenbelastung für den Patienten minimiert.
„Unser Verfahren wird in der wissenschaftlichen Welt definitiv die Detektoren verändern“, so Losko. Und möglicherweise werden ähnliche Prinzipien irgendwann auch in normalen Kameras für den Privatgebrauch Einzug halten. Aufnahmen bei Dunkelheit würden sich dadurch stark verbessern. Außerdem könnten Fotografen die Belichtungszeit und die Auflösung auch nach der Aufnahme noch anpassen. Das Rauschen von Kameras ließe sich praktisch eliminieren.
Publikation:
Adrian Losko, Yiyong Han, Burkhard Schillinger, Aureliano Tartaglione, Morgano, Markus M. Strobl, Jingming Long, Anton Tremsin, Michael Schulz
New Perspectives for Neutron Imaging through Advanced Event-Mode Data Acquisition
Sci Rep. 11, Article number: 21360 (2021) – DOI: 10.1038/s41598-021-00822-5
https://www.nature.com/articles/s41598-021-00822-5
Mehr Informationen:
Die Forschungsarbeit wurde gefördert durch das Bundesministerium für Bildung und Forschung (BMBF). Außer den Wissenschaftlerinnen und Wissenschaftlern der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) an der Technischen Universität München waren Forscherinnen und Forscher des Paul Scherrer Instituts in Villigen (Schweiz), der Amsterdam Scientific Instruments B.V. (Niederlande) und des Space Sciences Laboratory der University of California, Berkely (USA), an dem Projekt beteiligt.
Kontakt:
Dr. Adrian Losko
Technische Universität München
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
Lichtenbergstr. 1, 85748 Garching
Tel.: +49 89 289 14756 – E-Mail: Adrian.Losko@frm2.tum.de
Web: https://www.frm2.tum.de/ - https://mlz-garching.de/
Instrument NECTAR: https://mlz-garching.de/medapp-nectar/de
Das Heinz Maier-Leibnitz Zentrum (MLZ) in Garching bei München ist ein weltweit führendes Zentrum für Spitzenforschung mit Neutronen und Positronen. Als Serviceeinrichtung für Gastwissenschaftler stellt das MLZ einzigartige, leistungsfähige wissenschaftliche Instrumente im Bereich der Neutronenforschung zur Verfügung. Das MLZ ist eine Kooperation der Technischen Universität München, des Forschungszentrums Jülich und des Helmholtz-Zentrums hereon. Es wird gemeinsam finanziert durch das Bundesministerium für Bildung und Forschung, das Bayerische Staatsministerium für Wissenschaft und Kunst sowie Partner der Kooperation.
Die Technische Universität München (TUM) ist mit mehr als 600 Professorinnen und Professoren, 48.000 Studierenden sowie 11.000 Mitarbeiterinnen und Mitarbeitern eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit den Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit dem Campus TUM Asia in Singapur sowie Verbindungsbüros in Brüssel, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006, 2012 und 2019 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands.