All Stories
Follow
Subscribe to Technische Universität München

Technische Universität München

Models of life: Artificially produced cells communicate with each other

TECHNICAL UNIVERSITY OF MUNICH

Corporate Communications Center

Phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de

This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35181/

High resulution images and video: https://mediatum.ub.tum.de/1471327

NEWS RELEASE

Models of life

Artificially produced cells communicate with each other

Friedrich Simmel und Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, exchange small chemical signaling molecules to trigger more complex reactions, such as the production of RNA and other proteins.

Scientists around the world are working on creating artificial, cell-like systems that mimic the behavior of living organisms. Friedrich Simmel and Aurore Dupin have now for the first time created such artificial cell assemblies in a fixed spatial arrangement. The highlight is that the cells are able to communicate with each other.

"Our system is a first step towards tissue-like, synthetic biological materials that exhibit complex spatial and temporal behavior in which individual cells specialize and differentiate themselves, not unlike biological organisms," explains Friedrich Simmel, Professor of Physics of Synthetic Biosystems (E14) at TU Munich.

Gene expression in a fixed structure

Gels or emulsion droplets encapsulated in thin fat or polymer membranes serve as the basic building blocks for the artificial cells. Inside these 10 to 100 micron sized units, chemical and biochemical reactions can proceed uninhibited.

The research team used droplets enclosed by lipid membranes and assembled them into artificial multicellular structures called "micro-tissues". The biochemical reaction solutions used in the droplets can produce RNA and proteins, giving the cells a of a kind of gene expression ability.

Signal exchange and spatial differentiation of cells

But that's not all: Small "signal molecules" can be exchanged between cells via their membranes or protein channels built into the membranes. This allows them to temporally and spatially couple with each other. The systems thus become dynamic - as in real life.

Chemical pulses thus propagate through the cell structures and pass on information. The signals can also act as triggers, allowing initially identical cells to develop differently. "Our system is the first example of a multicellular system in which artificial cells with gene expression have a fixed arrangement and are coupled via chemical signals. In this way, we achieved a form of spatial differentiation, "says Simmel.

Models, mini factories and microsensors

Developing these kinds of synthetic systems is important since they allow scientists to investigate fundamental questions about the origins of life in a model. Complex organisms became possible only after cells began specializing and distributing work between cooperating cells. How this came about is among the most fascinating questions in basic research.

Using a modular construction kit of tailor-made cell systems, the researchers hope to simulate various properties of biological systems in the future. The idea is that cells react to their environment and learn to act independently.

The first applications are already on the horizon: In the long term, artificial cell assemblies can be deployed as mini-factories to produce specific biomolecules, or as tiny micro-robot sensors that process information and adapt to their environments.

Cells from a 3-D printer

Friedrich Simmel and Aurore Dupin still assemble their cell systems manually using micromanipulators. In the future, however, they plan to cooperate with the Munich University of Applied Sciences, for example, to systematically build larger and more lifelike systems using 3-D printing technology.

Publication:

Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits

Aurore Dupin and Friedrich C. Simmel

Nature Chemistry, 26.11.2018 - DOI: 10.1038/s41557-018-0174-9

Link: https://www.nature.com/articles/s41557-018-0174-9

Nature "Behind the paper": https://chemistrycommunity.nature.com/users/189114-aurore-dupin/posts/40976-signaling-and-differenti...

Nature "News & Views": https://www.nature.com/articles/s41557-018-0192-7

Further information:

This work was funded by the European Research Council and the DFG Cluster of Excellence Nanosystems Initiative Munich (NIM). Aurore Dupin was supported by the DFG Research Training Group "Chemical Foundations of Synthetic Biology".

Piecework at the nano assembly line: https://www.tum.de/en/about-tum/news/press-releases/detail/article/34408/

The thousand-droplets test: https://www.tum.de/en/about-tum/news/press-releases/detail/article/31346/

High resolution images and video:

https://mediatum.ub.tum.de/1471327

Contact:

Prof. Dr. Friedrich C. Simmel

Technical University of Munich

Physics of Synthetic Biological Systems (E14)

Am Coulombwall 4a, 85748 Garching, Germany

Tel.: +49 89 289 11610 - E-Mail: simmel@tum.de

Web: https://www.groups.ph.tum.de/en/e14/home/

The Technical University of Munich (TUM) is one of Europe's leading research
universities, with around 550 professors, 42,000 students, and 10,000 academic
and non-academic staff. Its focus areas are the engineering sciences, natural
sciences, life sciences and medicine, combined with economic and social
sciences. TUM acts as an entrepreneurial university that promotes talents and
creates value for society. In that it profits from having strong partners in
science and industry. It is represented worldwide with the TUM Asia campus in
Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco,
and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von
Linde, and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won
recognition as a German "Excellence University." In international rankings, TUM
regularly places among the best universities in Germany. www.tum.de
More stories: Technische Universität München
More stories: Technische Universität München
  • 20.12.2018 – 13:45

    TUM best at supporting start-ups

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 22798 - email: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/en/about-tum/news/press-releases/detail/article/35154/ NEWS RELEASE TUM best at supporting start-ups First place on the "Start-up Radar" - Optimum conditions for founders Founding start-ups is ideally supported at the Technical University of Munich (TUM), according to the results of the German "Start-up ...

  • 18.12.2018 – 14:22

    The vanished mirror image: Photochemical deracemization of chiral compounds achieved

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 10510 - e-mail: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35146/ High resolution images: https://mediatum.ub.tum.de/1469989 NEWS RELEASE The vanished mirror image Photochemical deracemization of chiral ...