All Stories
Follow
Subscribe to Technische Universität München

Technische Universität München

Physiologie des Überlebens: Bei Bakterien bestimmen die Nachbarn mit, welche Zelle zuerst stirbt

TECHNISCHE UNIVERSITÄT MÜNCHEN

Corporate Communications Center

Tel.: +49 89 289 10510 - E-Mail: presse@tum.de

Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35580/

Bildmaterial in hoher Auflösung: https://mediatum.ub.tum.de/1513622

PRESSEMITTEILUNG

Physiologie des Überlebens

Bei Bakterien bestimmen die Nachbarn mit, welche Zelle zuerst stirbt

Bakterien gehen in Hungerphasen nicht einfach nach dem Zufallsprinzip zugrunde, sondern auch die Nachbarzellen haben ein Wörtchen mitzureden. Ein Forschungsteam der Technischen Universität München (TUM) hat nun herausgefunden, dass vor allem zwei Faktoren über Leben und Tod entscheiden: die für das Weiterleben notwendige Energie und die Effizienz, mit der die Überlebenden Biomasse aus abgestorbenen Zellen recyceln können.

Überleben und Wachstum von Zellen sind zentrale Faktoren in biologischen Systemen. Wissenschaftlerinnen und Wissenschaftler wie Ulrich Gerland, Professor für die Physik komplexer Biosysteme an der TU München, versuchen daher zu verstehen, wie die molekularen Bestandteile zusammenspielen, um in Stresssituationen die Lebensfähigkeit eines Zellverbandes zu erhalten.

Dem Team um Ulrich Gerland ist es nun gelungen, zwei für das Überleben eines Bakteriums entscheidende Faktoren zu identifizieren: den Grundenergieverbrauch einer Zelle und die Menge an Energie, die die überlebenden Zellen pro toter Zelle aus der Nachbarschaft gewinnen können, also eine Art Effizienz im Recycling von Biomasse.

Nährstoffe aus benachbarten Zellkadavern

Die Forscher simulierten in Zellen des Bakteriums Escherichia Coli künstlich eine Notsituation: Es fehlte den Bakterien an Zucker und anderen Kohlehydraten. Den Bakterien standen damit weder Energie noch Baustoffe zur Verfügung.

Als erste Zellen abstarben, versuchten die überlebenden Zellen daraufhin, Nährstoffe aus benachbarten Zellkadavern zu gewinnen. Je höher der Verbrauch eines bestimmten Enzyms war, umso höher war auch die Sterblichkeitsrate, je mehr sie aus toten Zellen recyceln konnten, umso höher die Überlebensrate.

"Unsere Ergebnisse ermöglichen zum ersten Mal eine quantitative Bestimmung der Beiträge, die einzelne molekulare Bestandteile von bakteriellen Zellen zu ihrem Überleben leisten", sagt Gerland.

Zerfall als kollektives Phänomen

Insgesamt ergab sich eine exponentielle Abnahme der Überlebensrate mit der Zeit. Prinzipiell ließe sich ein solcher Verlauf mit dem zufälligen Sterben einzelner Zellen erklären, so ähnlich wie beim radioaktiven Zerfall, der ebenfalls exponentiell verläuft.

Doch die Zusammenhänge sind komplexer, wie die Forscher durch Ändern bestimmter Randbedingungen herausfanden: Der Zerfall in Bakterienkolonien ist ein kollektives Phänomen. Die benachbarten Bakterienzellen bestimmen also mit, ob eine Zelle in ihrer Mitte abstirbt oder weiterlebt.

Mathematische Analyse des Überlebens

Veränderungen der Sterblichkeitsrate können dabei aus einer Fülle genetischer oder ökologischer Störungen entstehen, die das Überleben von Bakterien beeinflussen. Das entstehende Gleichgewicht ist daher abhängig von den Umgebungsbedingungen und bei jedem Bakterium anders.

Um die Dynamiken zu verstehen, modellierten die Forschenden das Gesamtsystem der überlebenden Bakterien mathematisch. Dann nutzten sie diese Beziehung, um molekulare Beiträge zum Überleben von Zellen zu bestimmen.

Je nach Zelltyp können so die für das Überleben von Zellen wichtigen molekularen Faktoren ermittelt werden, und es lässt sich damit herausfinden, welche Enzyme oder Proteine jeweils die Überlebensrate bestimmen.

"Unser Ziel ist es, systematisch und quantitativ zu verstehen, wie Bakterien es schaffen, unter so vielen Umgebungsbedingungen zu überleben", sagt Gerland. "Es ist die Suche nach der Physiologie des Überlebens."

Publikation:

Death rate of E. coli during starvation is set by maintenance cost and biomass recycling

Severin J. Schink, Elena Biselli, Constantin Ammar, Ulrich Gerland

Cell Systems, July 17, 2019 - DOI: 10.1016/j.cels.2019.06.003

https://www.cell.com/cell-systems/fulltext/S2405-4712(19)30198-X

Weitere Informationen:

Die Arbeiten wurden unter unterstützt durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Exzellenzclusters Nanosystems Initiative Munich (NIM) und des Schwerpunktprogramms SPP1617 sowie durch das Fellowship-Programm der Graduiertenschule für quantitative Biowissenschaften München (QBM).

Bildmaterial in hoher Auflösung:

https://mediatum.ub.tum.de/1513622

Kontakt:

Prof. Dr. Ulrich Gerland

Physik komplexer Biosysteme

Technische Universität München

James-Franck-Str. 1, 85748 Garching

Tel.: +49 89 289 12380 - E-Mail: gerland@tum.de

Web: http://www.qbio.ph.tum.de/de/home/

Die Technische Universität München (TUM) ist mit rund 550 Professorinnen und
Professoren, 41.000 Studierenden sowie 10.000 Mitarbeiterinnen und Mitarbeitern
eine der forschungsstärksten Technischen Universitäten Europas. Ihre
Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften,
Lebenswissenschaften und Medizin, verknüpft mit den Wirtschafts- und
Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die
Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie
von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit dem
Campus TUM Asia in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai,
Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger
und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht.
2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In
internationalen Rankings gehört sie regelmäßig zu den besten Universitäten
Deutschlands. www.tum.de
More stories: Technische Universität München
More stories: Technische Universität München
  • 12.07.2019 – 08:32

    Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 10510 - E-Mail: presse@tum.de Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35570/ Bildmaterial in hoher Auflösung: https://mediatum.ub.tum.de/1510324 PRESSEMITTEILUNG Was ist die perfekte Quantentheorie? Künstliche Intelligenz löst Rätsel der ...

  • 09.07.2019 – 13:34

    Start-up-Wettbewerb: Weitblick für das autonome Fahren

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 22798 - E-Mail: presse@tum.de - Web: www.tum.de Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35558/ PRESSEMITTEILUNG Weitblick für das autonome Fahren Start-up Blickfeld gewinnt höchstdotierten deutschen Gründungspreis Das Start-up Blickfeld hat "Start me up!" gewonnen, den höchstdotierten ...

  • 09.07.2019 – 11:21

    TUM gegen LMU beim Drachenbootrennen

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 22798 - E-Mail: presse@tum.de - Web: www.tum.de PRESSEMITTEILUNG TUM gegen LMU beim Drachenbootrennen Uni-Teams im Wettkampf um die schnellsten Zeiten und originellsten Kostüme Zum zehnten Mal treten am 12. Juli Drachenboote der Technischen Universität München (TUM) und der Ludwig-Maximilians-Universität München (LMU) auf dem ...