All Stories
Follow
Subscribe to Technische Universität München

Technische Universität München

Neue Messung der Expansion des Universums bestärkt Forderung nach neuer Physik

TECHNISCHE UNIVERSITÄT MÜNCHEN

Corporate Communications Center

Tel.: +49 89 289 10510 - E-Mail: presse@tum.de

Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35861/

Bildmaterial in hoher Auflösung: https://mediatum.ub.tum.de/1534167

PRESSEMITTEILUNG

Hubble-Konstante: Neue Messung mit Hilfe kosmischer Linsen

Neue Messung der Expansion des Universums bestärkt Forderung nach neuer Physik

Die Bestimmung der Hubble-Konstante, ein Maß für die Expansion des Universums, ist seit Jahren eine der spannendsten Herausforderungen der Physik: Messungen im heutigen Universum liefern andere Werte als solche in der Frühphase des Universums. Ein Forschungsteam hat nun mit Hilfe kosmischer Linsen die Hubble-Konstante auf einem weiteren, unabhängigen Weg bestimmt. Das Ergebnis scheint die beunruhigende Diskrepanz zu bestätigen. Möglicherweise sind nun neue Theorien erforderlich, um die dahinter liegende Physik zu erklären.

Das Wissen darüber, wie schnell sich das Universum ausdehnt, ist wichtig, um das Alter, die Größe und das Schicksal unseres Kosmos zu bestimmen. Dieses Rätsel zu lösen, ist eine der größten Herausforderungen in der Astrophysik.

Ein internationales Team angeführt von Sherry Suyu, Professorin an der Technischen Universität München (TUM), Gruppenleiterin am Max-Planck-Institut für Astrophysik (MPA) und Gastwissenschaftlerin am Academia Sinica-Institut für Astronomie und Astrophysik in Taipeh, Taiwan, hat die Hubble-Konstante nun mit hoher Genauigkeit und völlig unabhängig von früheren Methoden bestimmt.

Die aktuelle Messung der Hubble-Konstante, die ein Maß für die Expansionsrate des Universums darstellt, ist die bisher genaueste Bestimmung unter Verwendung von Gravitationslinsen. Ausgenutzt wird bei dieser Methode, dass die Schwerkraft einer Vordergrundgalaxie wie eine riesige Vergrößerungslinse wirkt. Sie verstärkt und verzerrt das Licht von Hintergrundobjekten, und bildet das Objekt mehrfach ab.

Für die hier beschriebenen Messungen werden als Hintergrundobjekte Quasare verwendet. Dabei handelt es sich um extrem weit entfernte, aktive Schwarze Löcher, die Materie verschlucken und dabei hell leuchten. Abhängig von der Position des Quasars hinter der Vordergrundgalaxie muss das Licht der verschiedenen Abbilder des Quasars auf dem Weg zum Beobachter unterschiedlich lange Wege zurücklegen. Schwankungen in der Quasar-Helligkeit kommen daher zu unterschiedlichen Zeiten beim Beobachter an.

Eine weltweite Anstrengung

Das Astrophysikteam hat sich den Namen H0LiCOW (H0-Objektive in COSMOGRAILs Wellspring) gegeben. COSMOGRAIL ist die Abkürzung für Cosmological Monitoring of Gravitational Lenses, ein großes internationales Projekt, dessen Ziel die Überwachung von Gravitationslinsen ist. "Wellspring" bezieht sich auf das reichliche Angebot an Quasar-Linsensystemen.

Für die neuesten Messungen verwendete das Team Daten des Hubble-Weltraumteleskops, des 2,2 m-Teleskops der Europäischen Südsternwarte (ESO) und der Max-Planck-Gesellschaft in La Silla, des Very Large Telescope der ESO und Weitfeldaufnahmen des Dark Energy Survey in Chile sowie hochauflösende Aufnahmen mit der adaptiven Optik des Keck Observatoriums auf Hawaii.

Die H0LiCOW-Ergebnisse und andere kürzlich durchgeführte Messungen deuten nun auf eine schnellere Expansion im heutigen Universum hin, als dies aufgrund von Beobachtungen des Planck-Satelliten der Europäischen Weltraumorganisation (ESA) über das Verhalten des Kosmos vor mehr als 13 Milliarden Jahren zu erwarten gewesen wäre.

Deutliche Unterschiede

Aus ihren Beobachtungen errechnete das H0LiCOW-Team einen Wert von 73 Kilometern pro Sekunde pro Megaparsec für die Hubble-Konstante (mit einer Unsicherheit von 2,4 Prozent). Sie liegen damit in der Nähe des SH0ES-Team (Supernova H0 for the Equation of State), das mit Hilfe von variablen Cepheiden-Sternen und Supernovae die Entfernung zu erdnahen und erdfernen Galaxien bestimmt und daraus einen Wert von 74 errechnet.

Die SH0ES- und H0LiCOW-Werte unterscheiden sich signifikant von dem mit dem Planck-Satelliten gemessenen Wert von 67. Sie unterstreichen damit den Widerspruch zwischen Messungen der Hubble-Konstante im heutigen Universum und dem Wert, der aufgrund von Beobachtungen des frühen Universums vorhergesagt wird.

Neue Physik erforderlich, um die Diskrepanz zu erklären

"Während unsere ersten Ergebnisse bereits auf diesen hohen Wert für die Hubble-Konstante hindeuteten, sind wir uns jetzt sicher, dass es tatsächlich einen systematischen Unterschied zwischen den Werten in der Früh- und Spätphase des Universums gibt", erklärt Suyu.

Dr. Stefan Taubenberger, Teammitglied am MPA, fügt hinzu: "Unser H0LiCOW-Wert ist deutlich höher als der Planck-Wert - wissenschaftlich ausgedrückt mit mehr als 3-Sigma-Signifikanz. In Kombination mit der SH0ES-Messung steigt die Signifikanz sogar noch weiter an."

Die Kluft zwischen den beiden Werten hat wichtige Auswirkungen auf das Verständnis der zugrunde liegenden physikalischen Parameter und erfordert möglicherweise neue Physik, um die Diskrepanz zu erklären.

"Dass diese Ergebnisse nicht übereinstimmen, weist darauf hin, dass wir noch nicht vollständig verstehen, wie sich Materie und Energie im Laufe der Zeit entwickelt haben, insbesondere zu frühen Zeiten", sagt Sherry Suyu.

Verfeinerung der Messungen

Seit Beginn des Projekts im Jahr 2012 hat das H0LiCOW-Team nun Hubble-Aufnahmen und Zeitverzögerungsinformationen für 10 Quasare hinter Linsengalaxien gesammelt. In Zusammenarbeit mit Forschern aus neuen Programmen wird das Team nun nach neuen Linsenquasaren suchen und diese vermessen. Ziel ist es, 30 weitere solche Systeme zu beobachten, um die Unsicherheit für die Messung der Hubble-Konstante auf ein Prozent zu reduzieren.

Publikation:

Die Ergebnisse wurden am 8. Januar 2020 beim 235. Meeting der American Astronomical Society in Honolulu, Hawaii, vorgestellt.

H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3 ? tension between early and late Universe probes

Kenneth C. Wong, Sherry H. Suyu, Geoff C.-F. Chen, Cristian E. Rusu, Martin Millon, Dominique Sluse, Vivien Bonvin, Christopher D. Fassnacht, Stefan Taubenberger, Matthew W. Auger, Simon Birrer, James H. H. Chan, Frederic Courbin, Stefan Hilbert, Olga Tihhonova, Tommaso Treu, Adriano Agnello, Xuheng Ding, Inh Jee, Eiichiro Komatsu, Anowar J. Shajib, Alessandro Sonnenfeld, Roger D. Blandford, Leon V. E. Koopmans, Philip J.Marshall, and Georges Meylan

Publikation angenommen durch MNRAS - https://arxiv.org/abs/1907.04869

Bildmaterial in hoher Auflösung:

https://mediatum.ub.tum.de/1534167

Kontakt:

Prof. Dr. Sherry Suyu

Technische Universität München

Max-Planck-Institut für Astrophysik

Karl-Schwarzschild-Str. 1, 85748 Garching

Tel.: +49 89 30000 2015 - E-Mail: suyu@mpa-garching.mpg.de

Die Technische Universität München (TUM) ist mit rund 550 Professorinnen und Professoren, 43.000 Studierenden sowie 10.000 Mitarbeiterinnen und Mitarbeitern eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit den Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit dem Campus TUM Asia in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006, 2012 und 2019 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. www.tum.de

More stories: Technische Universität München
More stories: Technische Universität München
  • 20.12.2019 – 14:04

    Climate-friendly energy from waste heat

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 22798 - email: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/details/35853/ NEWS RELEASE Climate-friendly energy from waste heat Technology Transfer Prize of the German Physical Society awarded to Orcan Energy and TUM The German Physical Society (DPG) is jointly awarding its ...

  • 20.12.2019 – 11:27

    Klimafreundliche Energie aus Abwärme

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 22798 - E-Mail: presse@tum.de - Web: www.tum.de Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35853/ PRESSEMITTEILUNG Klimafreundliche Energie aus Abwärme Technologietransferpreis der Deutschen Physikalischen Gesellschaft für Orcan Energy und TUM Die Deutsche Physikalische Gesellschaft (DPG) ...

  • 17.12.2019 – 10:54

    Soziale Anerkennung schlägt Geld

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 22798 - E-Mail: presse@tum.de - Web: www.tum.de Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35845/ PRESSEMITTEILUNG Soziale Anerkennung schlägt Geld Schadet eine Lüge dem Status, verzichten Menschen eher auf finanzielle Vorteile Menschen sind ehrlicher, wenn sie über Wissensbereiche mit hohem gesellschaftlichen Ansehen sprechen. Das gilt auch dann, ...