All Stories
Follow
Subscribe to Technische Universität München

Technische Universität München

World’s first megawatt charger for electric trucks

TECHNICAL UNIVERSITY OF MUNICH

NEWS RELEASE

Major advance for long-distance electric road transport

World’s first megawatt charger for electric trucks

• In the future, the legally required rest period will be long enough for a full charge.

• Enormous environmental benefits from transition from diesel to electric power

• Technology ready for use

With partners from industry and research institutions, the Technical University of Munich (TUM) is to make battery-powered trucks viable for long-distance cargo transport. Megawatt charging represents an important step towards this goal. The first prototypes were presented to the public on Friday at an event on the Plattling Technology Campus with the Bavarian Minister of Economic Affairs Hubert Aiwanger in attendance. With the new charging post and truck, it will now be possible for the first time to charge the battery sufficiently for 4.5 hours of operation within the regulatory rest period – with no additional waiting time.

In Germany around 70 percent of freight transport in terms of volume and distance takes place on the road – mainly with diesel-powered trucks. This has a considerable environmental impact. 40 percent of transport-related emissions of 148 million tons of CO2 relate to freight transport. Consequently, a switch from diesel to electric power would yield substantial benefits. The research consortium NEFTON is working on the needed technical and infrastructure solutions under the leadership of the Chair of Automotive Technology of the Technical University of Munich (TUM).

Prof. Markus Lienkamp said: “The scientific facts send a clear message: Battery-powered trucks have an efficiency of around 75%. This puts them far ahead of trucks powered by fuel cells with a 26% efficiency and eFuels with a 14% efficiency. However, the necessary infrastructure for the effective use of electric trucks is still lacking along the main transport routes. The technology for megawatt charging represents an enormous step forward.”

Dr. Frederik Zohm, Executive Board Member for Research and Development at MAN Truck & Bus, said: “With NEFTON we have developed technologies that will make it possible to charge e-trucks rapidly and at a power rating of over 1000 kW. Our research prioritized real-world readiness, the costs and the grid power output. Along with our project partners we have clearly demonstrated that electric trucks and megawatt charging is the perfect combination for comprehensive decarbonization of road-based freight transport. The technology is there. Now it’s time to move ahead with the expansion of the charging infrastructure in the market through close cooperation between policymakers, the energy sector and vehicle manufacturers.”

Hubert Aiwanger, the Bavarian Minister of Economic Affairs, said: “This research project shows: high-tech and expertise from Bavaria will shape the mobility of the future. Initiatives like this will gradually decarbonize logistics and freight transport. This will boost the competitiveness of the Bavarian economy. I would therefore like to thank everyone who has contributed to the success of the NEFTON project. The Megawatt Charging System (MCS) will massively accelerate the charging times for trucks. This makes it a milestone in the development of electromobility. MAN has already demonstrated the real-world viability of this technology and has played a key role in developing standards. We are also incorporating the MCS technology into our current funding program. In the first round, we will finance 86 charge points. The next call for funding proposals is due to start in the late fall. Along with our hydrogen funding programs, this program is emblematic of the Bavarian state government’s openness to new mobility technologies.”

The NEFTON project

The NEFTON project has investigated the use of electric trucks in the real-world logistics process. The consortium worked with four freight forwarding companies to analyze various areas of application – from local distribution to long-distance transport. The results show that, for distribution and regional shipping, most charging can take place at the freight forwarder’s premises. However, long-distance transport operations will require a network of high-powered truck charging stations at highway rest stops and parking areas.

The results show that charging posts capable of delivering peak power of 1 megawatt should be installed every 50 km along core highway routes. This can eliminate all time losses from charging. In a research setting, charging outputs of up to 3 megawatts have been studied. This would greatly improve flexibility in everyday use. It would also make it possible to install smaller batteries, which would reduce costs and yield ecological benefits. The NEFTON project will now investigate these future prospects.

Further information:

NEFTON project: https://www.mos.ed.tum.de/en/ftm/main-research/smart-mobility/nefton-electrification-and-integration-of-heavy-commercial-vehicles/

Along with TUM and MAN, the following partners are participating in the NEFTON project consortium: AVL Software and Functions GmbH, Forschungsstelle für Energiewirtschaft e.V. (FfE), Fraunhofer ISE, Prettl Electronics Automotive, Deggendorf Institute of Technology

The project is funded by the Federal Ministry for Economic Affairs and Climate Action.

Additional Material for Media Outlets:Photos for download: https://mediatum.ub.tum.de/1748924

Subject matter expert:Prof. Dr. Markus Lienkamp

Technical University of Munich (TUM)

Chair of Automotive Technology / Munich lnstitute of Robotics and Machine lntelligence (MIRMI)

lienkamp@tum.de

https://www.mos.ed.tum.de/en/ftm/home/

TUM Corporate Communications Center contact:

Moritz MüllerMedia relations

Tel. +49 89 289 22798

presse@tum.de

www.tum.de

The Technical University of Munich (TUM) is one of the world’s leading universities in terms of research, teaching and innovation, with around 650 professorships, 52,000 students and 12,000 staff. TUM’s range of subjects includes engineering, natural and life sciences, medicine, computer sciences, mathematics, economics and social sciences. As an entrepreneurial university, TUM envisages itself as a global hub of knowledge exchange, open to society. Every year, more than 70 start-ups are founded at TUM, which acts as a key player in Munich’s high-tech ecosystem. The university is represented around the world by its TUM Asia campus in Singapore along with offices in Beijing, Brussels, Mumbai, San Francisco and São Paulo. Nobel Prize laureates and inventors such as Rudolf Diesel, Carl von Linde and Rudolf Mößbauer have conducted research at TUM, which was awarded the title of University of Excellence in 2006, 2012 and 2019. International rankings regularly cite TUM as the best university in the European Union.

More stories: Technische Universität München
More stories: Technische Universität München
  • 14.06.2024 – 10:09

    Impact of Russian social media campaigns less pronounced than often assumed

    TECHNICAL UNIVERSITY OF MUNICH NEWS RELEASE War-related disinformation most effective among conspiracy-minded people Impact of Russian social media campaigns less pronounced than often assumed • 19,000 people in Europe and America surveyed on Russian disinformation • Major differences between countries • Whether propaganda is believed does not primarily depend ...

  • 27.05.2024 – 10:41

    Multi-purpose mucus - What mucins can do in medicine

    TECHNICAL UNIVERSITY OF MUNICH NEWS RELEASE What mucins can do in medicine Multi-purpose mucus They are in our eyes, on our tongues, and in our stomachs: Protective layers of mucus, a slime consisting primarily of mucins. These are molecules which bind water to form a natural lubricant. Researchers at the Technical University of Munich (TUM) use them to develop coatings for contact lenses and intubation tubes, healing ...

  • 16.05.2024 – 17:21

    Risk perception influenced less by media than previously thought

    TECHNICAL UNIVERSITY OF MUNICH NEWS RELEASE People don’t overestimate the frequency of dramatic causes of death Risk perception influenced less by media than previously thought For decades, researchers have assumed that people overestimate the risk of dramatic causes of death, such as road traffic accidents. The reason given for this was that such deaths are the subject of far greater media attention than more ...