Alle Storys
Folgen
Keine Story von Universität Duisburg-Essen mehr verpassen.

Universität Duisburg-Essen

Sauerstoff- und Chlorgasentwicklung ohne Edelmetalle: Elektrisches Potenzial verwandelt Oberflächen

Sauerstoff- und Chlorgasentwicklung ohne Edelmetalle: Elektrisches Potenzial verwandelt Oberflächen
  • Bild-Infos
  • Download

Sauerstoff- und Chlorgasentwicklung ohne Edelmetalle

Elektrisches Potenzial verwandelt Oberflächen

Sie sind hoch selektiv und lassen sich leicht vom Reaktionsgemisch trennen: Einzelatomkatalysatoren vereinen die Vorteile homogener und heterogener Katalyse. Bisher ist ihre Herstellung in der Regel mit Edelmetallen verbunden, die auf einer Festkörperfläche verankert werden. Forschende unter der Leitung der Universität Duisburg-Essen zeigen nun, dass sich solche Strukturen auch elektrochemisch bilden können – selbstständig und ohne Edelmetalle. Ihre Erkenntnisse, publiziert im Fachjournal JACS *, eröffnen neue Wege für die einfachere, nachhaltigere Produktion von katalytisch aktiven Materialien.

MXene sind eine Klasse zweidimensionaler Materialien, die erst 2011 entdeckt wurde. Theoretische Studien sagten bisher voraus, dass sie in anodischen Prozessen nicht katalytisch aktiv sind. Diese These konnten Forschende um Prof. Dr. Kai S. Exner, Leiter der Theoretischen Katalyse und Elektrochemie der Universität Duisburg-Essen (UDE), nun per Multiskalenmodellierung widerlegen.

Die Wissenschaftler:innen fanden heraus: Legt man ein elektrisches Potenzial an MXene an, verändert sich ihre Oberfläche zu einer bürstenähnlichen Struktur: Atome unedler Metalle wandern heraus und bilden sogenannte "SAC-like structures" (single atom catalysts-like = ähnlich Einzelatomkatalysatoren). Diese vermitteln zwei wichtige Reaktionen: die Sauerstoff- und die Chlorgasentwicklung.

So entsteht ein Material, dessen Oberfläche ohne die Zugabe von Edelmetallen katalytisch aktive Stellen aufweist. „Wir konnten daraus schließen, dass sich MXene in einer elektrochemischen Umgebung ähnlich wie Enzyme verhalten: Durch das Anlegen eines elektrischen Potenzials entstehen ihre aktiven Stellen direkt im Prozess“, erklärt Exner.

Das Team konnte außerdem zeigen, dass die entstandenen Strukturen selektiv arbeiten: Befinden sich Wasser und Chloridionen gleichzeitig in der Reaktionsumgebung, findet ausschließlich die Chlorgasentwicklung statt. Diese ist ein zentraler Prozess in der chemischen Industrie, der weltweit jährlich über 70 Millionen Tonnen Chlorgas (Cl2) liefert. Cl2 wird unter anderem zur Herstellung von Medikamenten, Kunststoff und Batterien sowie zur Aufbereitung von Wasser benötigt. Steht der aktiven MXene-Oberfläche lediglich Wasser zur Verfügung, setzt sie hingegen Sauerstoff (O2) frei – ein wichtiger Schritt für die Bildung von grünem Wasserstoff in einem Elektrolyseur.

Diese Entdeckung kann die Herstellung von Einzelatomkatalysatoren deutlich erleichtern. Der Verzicht auf teure Edelmetalle reduziert zudem Kosten und Abhängigkeiten.

An der Studie waren auch Forschende der Universität Barcelona (Spanien) sowie Wissenschaftler:innen von Ruhr Explores Solvation, kurz RESOLV, beteiligt. RESOLV ist ein Exzellenzcluster der Universitätsallianz Ruhr.

* Journal of the American Chemical Society

Originalpublikation: https://doi.org/10.1021/jacs.4c08518

Weitere Informationen:

Prof. Dr. Kai S. Exner, Theoretische Katalyse und Elektrochemie, Tel. 0201/18 3-2992, kai.exner@uni-due.de

Redaktion: Birte Vierjahn, Tel. 0203/37 9-2427, birte.vierjahn@uni-due.de

Universität Duisburg-Essen

Stabsstelle des Rektorats Hochschulmanagement und Kommunikation
Ressort Presse
Forsthausweg 2 ● 47057 Duisburg
Ressortleitung, Pressesprecherin: Astrid Bergmeister
0203/ 37 9-2430 ●  astrid.bergmeister@uni-due.de
Weitere Storys: Universität Duisburg-Essen
Weitere Storys: Universität Duisburg-Essen