Alle Storys
Folgen
Keine Story von Technische Universität München mehr verpassen.

Technische Universität München

Synthese biobasierter Hochleistungs-Polyamide aus Reststoffen - Alternative zum Erdöl

TECHNISCHE UNIVERSITÄT MÜNCHEN

Corporate Communications Center

Tel.: +49 89 289 10510 - E-Mail: presse@tum.de

Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35874/

Bildmaterial mit hoher Auflösung: https://mediatum.ub.tum.de/1536701

PRESSEMITTEILUNG

Eine echte Alternative zum Erdöl

Synthese biobasierter Hochleistungs-Polyamide aus biogenen Reststoffen

Ein Forschungsteam der Fraunhofer-Gesellschaft und der Technischen Universität München (TUM) unter Leitung des Chemikers Volker Sieber hat eine neue Polyamid-Familie entwickelt, die sich aus einem Nebenprodukt der Zelluloseproduktion herstellen lässt - ein gelungenes Beispiel für nachhaltigere Wirtschaftsweise mit biobasierten Materialien.

Polyamide sind wichtige Kunststoffe, sie finden sich in Skibindungen genauso wie in Autos oder Kleidungsstücken. Kommerziell werden sie bislang meist auf Erdölbasis hergestellt; es gibt nur wenige "grüne" Alternativen, etwa aus Rizinusöl basierende Polyamide.

Biobasierte Verbindungen sind in der Herstellung oft deutlich teurer und können sich daher auf dem Markt bislang nur dann gegenüber Erdölprodukten durchsetzen, wenn sie besondere Eigenschaften haben.

Ein Team unter Leitung von Volker Sieber, Professor für Chemie biogener Rohstoffe an der TU München, hat nun eine völlig neue Polyamid-Familie entwickelt, die sich aus einem Nebenprodukt der Zelluloseproduktion herstellen lässt.

Neue Polyamidfamilie

Der biogene Ausgangsstoff, (+)-3-Caren, ist aus zwei aneinander hängenden Ringen aufgebaut. Die Chemiker der TUM und des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik (IGB) in Straubing modifizierten nun den einen Ring so, dass er sich unter Aneinanderreihung vieler Moleküle, also unter Bildung von Polymeren, öffnen lässt.

Der zweite Ring bleibt dabei jeweils erhalten. So entsteht anstelle einer linearen Polymerkette wie bei gewöhnlichen Polyamiden eine Kette, die viele kleine Ringe und weitere Seitengruppen trägt. Dies verleiht dem Polymer völlig neue Funktionen.

Spezielle Eigenschaften

Die neuen Polyamide überzeugen durch spezielle Eigenschaften, die sie für viele Anwendungen attraktiv machen. Sie werden beispielsweise erst bei höheren Temperaturen weich als die konkurrierenden Erdölprodukte. Zudem lassen sich die neuen Verbindungen sowohl transparent als auch teilkristallin herstellen, was bei gleichem Ausgangsstoff ihre späteren Einsatzmöglichkeiten vergrößert.

"Wir können leicht über Reaktionsbedingungen und Katalysatoren während der Synthese steuern, ob wir am Ende ein transparentes oder teilkristallines Polyamid erhalten", erklärt Sieber. "Die Grundlage dafür bietet aber vor allem die spezifische Struktur der biobasierten Ausgangsstoffe, die aus fossilen Rohstoffen so nur sehr aufwändig zu erhalten wäre."

Gewinn an Nachhaltigkeit

Aus industrieller Sicht überzeugend ist, dass die Synthese quasi in einem "Topf", also einem Reaktionsbehälter passiert. Dieses "one-pot"-Verfahren ermögliche es nicht nur, die Kosten erheblich zu reduzieren, sondern bedeute auch einen deutlichen Gewinn an Nachhaltigkeit, so Sieber.

Der biogene Ausgangsstoff (+)-3-Caren lässt sich nämlich aus bei der Zelluloseindustrie als Nebenprodukt anfallendem Terpentinöl mit verhältnismäßig geringem Aufwand in hoher Reinheit herausdestillieren.

Bislang wurde das Terpentinöl in den Zellulosefabriken nur verheizt. "Wir verwenden es als wertvollen Ausgangsstoff für Kunststoffe", sagt Sieber. "Das ist eine enorme Wertsteigerung."

Keine Konkurrenz zur Nahrungsmittelproduktion

Sieber weist darauf hin, dass man beim Terpentinöl nicht, wie etwa bei der Verwendung von Rizinusöl, in Flächenkonkurrenz zur Nahrungsmittelproduktion stehe. Noch sind die Forscher mit der erreichten Gesamtausbeute des Prozesses nicht ganz zufrieden, sie liegt bei 25 Massenprozent.

"Dank der einfachen Skalierbarkeit ist das Potenzial für einen effizienten Prozess sehr hoch", sagt Paul Stockmann, auf dessen Doktorarbeit an der TUM die Ergebnisse beruhen. Beim Fraunhofer-IGB arbeitet der Chemiker nun daran, (+)-3-Caran-basierte Polyamide als Alternative für erdölbasierte Hochleistungspolyamide am Markt zu etablieren.

?

Publikation:

Biobased Chiral Semi-Crystalline or Amorphous High-Performance Polyamides and their Scalable Stereoselective Synthesis

Paul N. Stockmann, Daniel Van Opdenbosch, Alexander Poethig, Dominik L. Pastoetter, Moritz Hoehenberger, Sebastian Lessig, Johannes Raab, Marion Woelbing, Claudia Falcke, Malte Winnacker, Cordt Zollfrank, Harald Strittmatter, Volker Sieber.

Nature Communications 24.01.2020 - DOI: 10.1038/s41467-020-14361-6

Link: https://www.nature.com/articles/s41467-020-14361-6

Mehr Informationen:

Die Arbeiten wurden durch das Ministerium für Ernährung und Landwirtschaft (BMEL) und die Fachagentur Nachwachsende Rohstoffe e. V. (FNR) finanziell gefördert.

Verwandte Pressemeldungen:

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35546/

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/33814/

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/30514/

Bildmaterial mit hoher Auflösung:

https://mediatum.ub.tum.de/1536701

Kontakt:

Prof. Dr. Volker Sieber

Professor für Chemie Biogener Rohstoffe

Campus Straubing für Biotechnologie und Nachhaltigkeit

Schulgasse 16, 94315 Straubing

Tel.: +49 9421 187 300 - E-Mail: sieber@tum.de

Web: https://cbr.cs.tum.de/

Die Technische Universität München (TUM) ist mit rund 550 Professorinnen und Professoren, 43.000 Studierenden sowie 10.000 Mitarbeiterinnen und Mitarbeitern eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit den Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit dem Campus TUM Asia in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006, 2012 und 2019 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. www.tum.de

Weitere Storys: Technische Universität München
Weitere Storys: Technische Universität München
  • 22.01.2020 – 09:05

    Digital Düngen

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 22778 - E-Mail: presse@tum.de Dieser Text im Web: https://www.tum.de/die-tum/aktuelles/ Bildmaterial in hoher Auflösung: https://mediatum.ub.tum.de/1535241 PRESSEMITTEILUNG Digital Düngen Algorithmen und Sensoren für eine nachhaltige und zukunftsfähige Landwirtschaft Die Vorgaben der Europäischen Union verlangen eine Verringerung des Nitratgehalts im Grundwasser. Dabei helfen digitale ...

  • 17.01.2020 – 13:59

    Studieninfotag der TUM am 12. März

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 22798 - E-Mail: presse@tum.de - Web: www.tum.de PRESSEMITTEILUNG TUM öffnet Türen für Schülerinnen und Schüler Studieninfotag am 12. März in München, Garching, Freising und Straubing Welcher Studiengang passt zu mir? Wie sehen die Labore meines Lieblingsfachs aus? Wie läuft der Alltag an einer Uni? Am 12. März öffnet die ...

  • 16.01.2020 – 11:18

    Selbstorganisation: Komplexe chirale, poröse Nanostrukturen aus einfachen linearen Bausteinen

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 10510 - E-Mail: presse@tum.de Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35868/ Bildmaterial mit hoher Auflösung: https://mediatum.ub.tum.de/1535044 PRESSEMITTEILUNG Muster mit außergewöhnlichen Eigenschaften Komplexe chirale, poröse ...