Alle Storys
Folgen
Keine Story von Albert-Ludwigs-Universität Freiburg mehr verpassen.

Albert-Ludwigs-Universität Freiburg

Stark erhöhte Oxidationspotentiale durch angepasste Lösungsmittel

Stark erhöhte Oxidationspotentiale durch angepasste Lösungsmittel
  • Bild-Infos
  • Download

Stark erhöhte Oxidationspotentiale durch angepasste Lösungsmittel

  • Wissenschaftler*innen um Prof. Dr. Ingo Krossing aus der Anorganischen Chemie an der Universität Freiburg ist es gelungen, das Oxidationspotential klassischer Reagenzien erheblich zu erhöhen.
  • Hierfür nutzten die Forschenden hochfluorierte Benzolderivate mit strategischem und polaritätsmaximierendem Substitutionsmuster.
  • Laut Prof. Krossing eröffnet dies „neue Grundlagenforschung mit Kationen in gasphasen-ähnlichen Bedingungen genauso wie bisher unmögliche Anwendungen im Bereich der Redox-Shuttles / -Mediatoren oder der Elektrokatalyse.“

Ein Team von Wissenschaftler*innen um Prof. Dr. Ingo Krossing, Professor für Molekül- und Koordinationschemie am Institut für Anorganische und Analytische Chemie der Universität Freiburg, ist es gelungen, das Oxidationspotential von und Kationen deutlich zu erhöhen. Während in konventionellen Lösungsmitteln und Anionen die Potentiale dieser Kationen bis zu +0.65 / +1.0 V vs. Fc+/0 betragen, präsentierten die Wissenschaftler*innen Potentiale von bis zu +1.50 / +1.52 V vs. Fc+/0. Dies gelingt durch die Verwendung von besonders schwach interagierenden Lösungsmitteln und Anionen. Dabei setzt die Arbeitsgruppe einen Fokus auf strategisch und polaritätsmaximierend substituierte fluorierte Benzolderivate. Mit diesem neuen Ansatz sind zukünftig Redox-Reaktionen auch mit schwer zu oxidierenden Systemen oder vollkommen neue Anwendungen im Bereich der Elektrokatalyse oder Redox-Shuttles/-Mediatoren möglich. Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler*innen im Journal Nature Communications.

Je schwächer die Wechselwirkung mit dem Kation, desto stärker das Oxidationspotential

Die Ag+ und NO+ Kationen sind weit verbreitete Oxidationsmittel in der Chemie und der Material­forschung. Mit den richtigen Bedingungen können sie selektiv Elektronen von Substraten entfernen. Da diese Kationen sehr klein sind und eine hohe Ladungsdichte haben, interagieren sie stark mit ihrer Umgebung. Eben diese starke Interaktion mit der Umgebung, zum Beispiel dem Anion oder dem Lösungsmittel, führt dazu, dass das Oxidationspotential dieser Kationen auch stark herabgesetzt ist. Um die Oxidationskraft der gelösten Kationen zu maximieren, haben die Wissenschaftler*innen besonders schwach koordinierende Anionen (WCA, „weakly coordinating anions“) und Lösungsmittel verwendet.

Als Lösungsmittel griff die Arbeitsgruppe auf fluorierte Benzolderivate zurück. Um die Eigenschaften dieser Molekülklasse zu verstehen, unterstützte Dr. Johannes Hunger vom Max-Planck-Institut für Polymerforschung die Forschung und ermittelte die als Lösungsmitteleigenschaft sehr wichtigen Werte der dielektrischen Konstante. Hier zeigte sich, dass besonders die zweifach- bis vierfach fluorierten Aromaten in diesem Aspekt höhere Werte aufweisen als konventionelle Lösungsmittel wie Dichlormethan oder Aceton.

Während Benzol selbst oder einfach fluoriertes Benzol noch stark mit den Ag+ und NO+ Kationen interagiert, nimmt die Wechselwirkung mit jedem weiteren Fluoratom ab. „Neben den elektrochemischen Messungen haben wir durch Einkristall-Röntgenbeugung die Festkörperstrukturen von Verbindungen aus den Lösungsmitteln und den Kationen ermittelt und konnten auch hier die geringere Interaktion bei steigendem Fluorierungsgrad zeigen.“, erklärt Ko-Autor Dr. Malte Sellin.

„Diese nahezu ungestörten Teilchen und ihr hohes Oxidationspotential ermöglichen uns bisher nicht erreichbare Reaktionen,“ sagt Krossing. „Hierdurch ist eine Vielzahl neuer grundlegender chemischer Untersuchungen und potentiell auch völlig neuer Anwendungen möglich. Wir werden in Zukunft noch besser verstehen, wie sich Moleküle im oxidierten Zustand verhalten – einfach weil wir sie jetzt auch herstellen und untersuchen können.“

  • Originalpublikation: Armbruster, Sellin, Seiler, Würz, Oesten, Schmucker, Sterbak, Fischer, Radtke, Hunger, Krossing (2024): Pushing the redox potentials of deelectronators to highly positive values using solvent effects and weakly coordinating anions. Nature Communications. https://doi.org/10.1038/s41467-024-50669-3
  • Prof. Dr. Ingo Krossing leitet die Professur für Molekül- und Koordinationschemie am Institut für Anorganische und Analytische Chemie der Universität Freiburg und ist Mitglied des Exzellenzclusters Living, Adaptive and Energy-autonomous Materials Systems (livMatS).
  • Dr. Malte Sellin war Doktorand bei Ingo Krossing und ist jetzt Postdoktorand an der Professur für Molekül- und Koordinationschemie.
  • Die Forschungsarbeit wurde gefördert von der Deutschen Forschungsgesellschaft DFG (Projektnummern 431116391, 281091989, 350173756) sowie vom European Research Council ERC (Grant agreement ID 101052935).

Kontakt:

Hochschul- und Wissenschaftskommunikation

Universität Freiburg

Tel.: 0761/203-4302

E-Mail: kommunikation@zv.uni-freiburg.de

Weiterführende Links:
 NewsroomMedien-TermineOnline-Magazin
Albert-Ludwigs-Universität Freiburg
Geschäftsbereich Wissenschaftskommunikation und Strategie
Abt. Hochschul- und Wissenschaftskommunikation
Rektorat . Fahnenbergplatz . 79085 Freiburg
Tel.: (+49) 0761/203 4302
Weitere Storys: Albert-Ludwigs-Universität Freiburg
Weitere Storys: Albert-Ludwigs-Universität Freiburg